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Cosmic frentier backyard: ubiquity of massive BHS

Black holes with Mgn~106 - 1010 Mg are found at the
centres of most (if not all) galaxies in the local Universe
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X-ray surveys (Chandra + XMM-Newton):
track the growth of these black holes by accretion
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X-ray surveys (Chandra + XMM-Newton):
track the growth of these black holes by accretion

Integrating LF =>
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X-ray surveys (Chandra + XMM-Newton):
track the growth of these black holes by accretion
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X-ray surveys (Chandra + XMM-Newton):

track the growth of these black holes by accretion

Cosmic X-ray
background

(integrated emission from BH
growth over the lifetime of the
Universe)

e >90% resolved by Chandra at
soft energies (<2 keV)

e ~35% resolved by NUSTAR at
energies >8keV

e Population synthesis models
(based on Chandra/XMM surveys at

0.5-10keV) =>

e produced by SMBH accretion,
primarily at z<2

e successfully recover full shape
and peak at ~20-30 keV -
dominated by obscured AGN
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Open gquestions regarding the bulk of BH growth

Connection to galaxy properties”
(triggering/fuelling mechanisms, impact of
AGN feedback on galaxy evolution)

Credit: Hubble/Galaxy Zoo

Contribution of Compton-thick AGN?

Physics of the accretion process?
(structure of accretion disk+corona, winds/jets,
BH spin, super-Eddington accretion)




VWhere do these
supermassive black
holes come from??



SMBH seed mechanisms
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Massive black holes in the early (z>6) Universe
- optical/near-IR searches

- Searches for rare,
luminous QSOs at z>6

= Require large-area, [
deep optical + NIR ‘
Imaging, search for _'
“drop-outs” due to -3
absorption by neutral o
hydrogen

@ spss

Pan-STARRS

DARK ENERGY
SURVEY




Massive black holes in the early (z>6) Universe
- optical/near-IR searches

~146 known quasars at z>6 (4 at z>7)
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Optical spectra of luminous z>7 quasars

Observed wavelength (pom)
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X-ray properties of luminous z>6 quasars

Chandra 0.5-7keV image of

J1342+0928, z=7.54
(Banados et al. 2018b)
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Building high redshift QSOs - constraints on

growth rates and seed masses

cosmic

/ time
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e Black hole mass grows as:
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radiative Eddington
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f

seed mass

o direct collapse at z~15, but
requires growth at ~Eddington
limit for entire lifetime

» from a Poplll remnant at z<20,
but requires growth at
~Eddington limit for entire lifetime
and low radiative efficiency
(maintain low spin = chaotic
accretion?)
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Building high redshift QSOs - constraints on
growth rates and seed masses

e Black hole mass grows as: cosmic 30 20 € Re?ghlft (Z)8
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Building high redshift QSOs - constraints on
growth rates and seed masses
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Building high redshift QSOs - constraints on
growth rates and seed masses
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Current X-ray searches for early AGN

X-ray surveys:
e probe a broad range in luminosity
e find fainter AGN, generally not identified by optical or IR selection
e identify obscured AGN
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The evolution of the space density of X-ray

detected AGN

Redshiit
0.0 05 1.0 2.0 5.0
10'3 T T 11 Iq)l T T T I -
Q(D QJ/QQ/%/
10} xxxxxX;?§&
— XX R
™M - X 17, >
| / ** " AA/%%
2 10_5?( gatt )%%%
= f A
> A 4
c
S A 4 \gk\\\\\}\\\w X
S 107 %\\@* o og
s N NN
%) @ \
_ \§« ¢|42<logLX<43—_@ ‘
107 \%\%@ 44 < log L 45 A
< lo < A
S 15 < log s < 46 ——a
1090 . . o
0.0 0.2 0.4 0.6
log (1+2)

Data points= Miyaji et al. (2015)
Lines+shading = Aird et al. (2015)

e Strong decline in space densities at z > 3
for all luminosities

-
- - -
- ~ ) ®
- -
- -~
A
- -
‘ y \ \ \ -

y -~ '

! . ,
™

Davidzon+17
QUMM ., = 10" - 10'°A1.)
» 10" AL )

<« 002

UM(Ar,

<« 02

~ This work
~ - = l . 12.5<logl xy <43
98 - B<logly <4

bogLy < 45

® Marchesi+16, logly > 41.1
A Ueda+14, 44 <logly <45

Kalfountzou+ 14,
M<logly<d4.7

4 5 6

Redshift —_—

Vito et al, (2018) High redshift
(see also Brusa+09, Civano+12,

Ueda+14, Vito+14, Weigel+15,
Georgakakis+15, Khorunzhev+18)



X-ray searches for the earliest SM
- “subb-threshold” detections

» deep NIR+optical imaging (HST/CANDELS)
provides moderate samples of galaxies at z>5

* Attempt to improve X-ray source *
identification using galaxy positions
Giallongo et al. (2019)
identifies additional AGN =

log

=>

e constraints on faint end of
UV luminosity function
(connection to opt+IR
selected quasars)

e role of AGN in re-ionization,)

H-band image + X-ray contours

BHS
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 see also Fiore+12, Giallongo+15, Cappelluti+16



X-ray searches for the earliest SMBHSs

- stacking

» deep NIR+optical imaging (HST/CANDELS)
provides moderate samples of galaxies at z>5

« Stack the X-ray data at the galaxy
positions

e.g. Vito+16
e X-ray signal likely dominated by star formation processes

e Places upper limits on BH accretion density due to low-Lx
AGN in these very high-z galaxies



X-ray searches for the earliest SMBHSs

- what’s left...?

e Background fluctuations!

¢ correlation between infrared
and X-ray background
fluctuations Cappelluti+13,16
=> tracer of early BHs

X-ray

Infrared

see next talk by Nico Cappelluti



Tracking the early growth of SMBHSs
with Athena

e Current surveys (Chandra) 13
have the sensitivity to detect
low-to-moderate Lx AGN
(1043-44 erg s°1) at z>0, but
lack the area coverage

eROSITA _:]

14

COSMOS
Legacy

= Athena:

® |arge-collecting area
(1.4m2)
¢ |arge field-of-view (40'x40)

e PSF ~5” HEW across
the FOV

 survey speed up to 100 -17
times faster than 102 e . -
Chandra Area [deg®]

15 AEGIS

Wide: ~48 deg2i§
ATHENA? :

.............. DR AL S SR ST S

5" confusion limit:

Deep: ~6 deg? =

-16

log fy 5.5 kev [ETQ s’ Cm-z]

~22.5 Ms survey programme (tentative plan):
4x1.3Ms + 8x950ks + 108x90ks



Tracking the early growth of SMBHSs
with Athena
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Counterparts to Athena X-ray SOUrCes (in the early 2030s)

« ~50 deg? Athena ‘shallow’ (~90ks)
surveys will be well matched in
depth/area to forthcoming deep

optical/near-infrared surveys
(e.g. Euclid, HyperSuprimeCam, LSST)

- JWST imaging required to identify
counterparts in deep Athena

surveys (~6 deg?, 950ks) - - e carett
- Athena will pinpoint o O

(low-L/obscured) AGNs within = ~ T Al MA

samples of early (z>6) galaxies - ¢

efficiently tracing SMBH T
accretion activity -~ & |

 Further follow-up with ELTs,
ALMA, JWST for

« spectroscopic redshifts

« host properties (stellar mass, star formation
rates, dust masses etc.)



Athena constraints vs. models

Amarantidis+19

— LDDE2, 2=7.5
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see also: Ricarte+18, Valiante+18,
DeGraf+19, Griffin+19

Comparison of the high-z AGN
luminosity function from a range of
hydrodynamic and semi-analytic
simulations

vS. predicted Athena constraints

« models often high vs. empirical predictions

(extrapolations) - also true at lower z!

 order of magnitude differences between

models - Athena will provide vital
constraints!

« some models do not extend to highest Lx

- volume limitations?



Athena constraints vs. models

« Detection of an AGN with z=6—8
Lx=10ergs! atz=06 . | .

' I
=> MBH >~ _2x106. Msun 102 o Poplll seeds, Edd. limit
(assuming ~Eddington limited) ////////// Massive seeds, 30% Edd.
- //// Athena+ predicted
%
L

« Detection of an AGN with o i ///////
Lx=10%ergs! atz=8 & 10 Dy -
=> MpgH >~ 2X107 Msun 3 . Q é/%///é% .
(assuming ~Eddington limited) = - //@//
3 i
R ///
Athena will not identify SMBH seeds > 1
immediately after their formation

but samples will constrain the extent
of early mass growth, where this |

. . 0.1 |
growth occurs within the ;>6 galaxy {7 _16.5 18 _155
population, and the possible seed log flux [erg/s/cm?]
mechanisms, ruling out certain 8 &

classes of models Aird, Comastri et al. 2013, models by Marta Volonteri




Seyond Athena:
AXIS and Lynx

! |
eROSITA

To detect accreting -14
~104-5 Mo black holes in

the z~6-10 Universe,
requires ~1" resolution
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Summary

-+ Bulk of the mass growth of supermassive black holes is due to accretion
at z<3 and is well-characterised

But initial seeds likely formed in particular environments at very high z>10,
with sulbsequent growth by merging but (mostly) accretion

Latest optical/NIR surveys starting to sample quasar population at z>6
- challenges for seed models to build most massive black holes

+ Current X-ray surveys reveal strong drop in space density of AGN at all
luminosities at z>3 - very few sources found at z>5 even though Chandra
has the sensitivity to detect them

- To characterise early growth need to reach deepest Chandra flux limits
over large sky areas (6-50 deg?) coverage => ATHENA?

- To directly see the initial growth of ~104-5Me black holes requires order of

RRRRRRRRRRRRRR

magnitude improvement in sensitivity and wide-area coverage => [ YINX




