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Cosmic frontier backyard: ubiquity of massive BHs
Black holes with MBH~106 - 1010 M⦿ are found at the 
centres of most (if not all) galaxies in the local Universe
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(N.B. Francesco 
Shankar talk  
=> biased sampling 
of BHs?)



X-ray surveys (Chandra + XMM-Newton): 
track the growth of these black holes by accretion
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X-ray surveys (Chandra + XMM-Newton): 
track the growth of these black holes by accretion

Bulk of this growth 
occurred at z~1-3, 
primarily in 
moderate-luminosity 
obscured sources  
(revealed by X-ray 
observations)0.0 0.2 0.4 0.6
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X-ray surveys (Chandra + XMM-Newton): 
track the growth of these black holes by accretion
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Accretion growth 
(primarily at z~1-3) 
accounts for the 
BH mass density 
in the local 
Universe

Ueda+14 
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X-ray surveys (Chandra + XMM-Newton): 
track the growth of these black holes by accretion

Cosmic X-ray 
background  
(integrated emission from BH 
growth over the lifetime of the 
Universe) 
• >90% resolved by Chandra at 

soft energies (<2 keV) 
• ~35% resolved by NuSTAR at 

energies >8keV 
• Population synthesis models 

(based on Chandra/XMM surveys at 
0.5-10keV) => 

• produced by SMBH accretion, 
primarily at z<2 

• successfully recover full shape 
and peak at ~20-30 keV - 
dominated by obscured AGN 
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Aird+15 (adapted).  
See also e.g. Gilli+07, Triester+09, Ballantyne+11, 
Akylas+12, Ueda+14, Ananna+19,  
Mackenzie Jones talk



Open questions regarding the bulk of BH growth

• Connection to galaxy properties? 
(triggering/fuelling mechanisms, impact of 
AGN feedback on galaxy evolution) 

• Contribution of Compton-thick AGN? 

• Physics of the accretion process? 
(structure of accretion disk+corona, winds/jets, 
BH spin, super-Eddington accretion)

Illustration: NASA/CXC/M.Weiss)
Credit: Hubble/Galaxy 

Credit: Hubble/Galaxy Zoo



Where do these 
supermassive black 
holes come from?



Grow by merging 
and accretion

SMBH seed mechanisms

MBH ~ 100 M⦿ 

z~20-30
Pop III star 
remnants

Direct 
gravitational 

collapse

MBH ~ 105 M⦿ 

z~15

Stellar 
cluster 

collapse

MBH ~ 1000 M⦿ 

z~10

MBH ~ 106 - 1010 M⦿ 

z~6 and below

from Volonteri (2012) 



• Searches for rare, 
luminous QSOs at z>6 

➡ Require large-area, 
deep optical + NIR 
imaging, search for 
“drop-outs” due to 
absorption by neutral 
hydrogen

Massive black holes in the early (z>6) Universe  
- optical/near-IR searches

Bañados et al. 2018



Massive black holes in the early (z>6) Universe  
- optical/near-IR searches
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Athena WFI survey
Chandra/XMM surveys

~146 known quasars at z>6 (4 at z>7) 

Bañados+16 (and references therein), Mazzucchelli+17, Matsuoka+19a,19b 

J1342+0928 

z=7.54 
(Bañados+18)

HSC-J1243 

z=7.07 
(Matsuoka+19a)



Optical spectra of luminous z>7 quasars

z=7.54 (Bañados et al. 2018)
MgII ->  
BH mass 
estimates

Composites of 75 broad-line 
and 18 narrow-line quasars at 
5.7<z<7 from 
Subaru High-z Exploration of 
Low-Luminosity Quasars 
(SHELLQs) 

(Matsuoka+19b)



X-ray properties of luminous z>6 quasars

Vito et al. 2019

see upcoming talks by Fabio Vito and Ricardo Nanni

Chandra 0.5-7keV image of 
J1342+0928, z=7.54  

(Bañados et al. 2018b)



Building high redshift QSOs - constraints on 
growth rates and seed masses

Cosmic Time

• Black hole mass grows as:

J1342+0928

seed mass
radiative 
efficiency

Eddington 
luminosity

cosmic 
time

The seed of J1342 (z=7.54, MBH≈8 x 
108 M⦿) could have formed by: 

• direct collapse at z~15, but 
requires growth at ~Eddington 
limit for entire lifetime


• from a PopIII remnant at z<20, 
but requires  growth at 
~Eddington limit for entire lifetime 
and low radiative efficiency 
(maintain low spin = chaotic 
accretion?)
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Building high redshift QSOs - constraints on 
growth rates and seed masses

Cosmic Time

• Black hole mass grows as:

HSC-J1243

seed mass
radiative 
efficiency

Eddington 
luminosity

cosmic 
time

HSC-J1243 (z=7.07, MBH≈3.3 x 108 
M⦿): 

• also consistent with direct 
collapse or PopIII if accreting at 
Eddington limit




Building high redshift QSOs - constraints on 
growth rates and seed masses

Cosmic Time

• Black hole mass grows as:

HSC-J1243

seed mass
radiative 
efficiency

Eddington 
luminosity

cosmic 
time

HSC-J1243 (z=7.07, MBH≈3.3 x 108 
M⦿): 

• also consistent with direct 
collapse or PopIII if accreting at 
Eddington limit


• Observed fEdd=0.3 - if accreting 
at this rate (on average) requires 
direct collapse
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Building high redshift QSOs - constraints on 
growth rates and seed masses

Cosmic Time

• Black hole mass grows as:

HSC-J1243

seed mass
radiative 
efficiency

Eddington 
luminosity

cosmic 
time

HSC-J1243 (z=7.07, MBH≈3.3 x 108 
M⦿): 

• also consistent with direct 
collapse or PopIII if accreting at 
Eddington limit


• Observed fEdd=0.3 - if accreting 
at this rate (on average) requires 
direct collapse
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To constrain the early growth of SMBHs, 
need to probe the “typical” z>6 AGN 
(lower mass black holes, lower luminosities, obscured 
sources => determine the extent and distribution of the 
bulk of early BH growth)



Current X-ray searches for early AGN 
X-ray surveys:


• probe a broad range in luminosity

• find fainter AGN, generally not identified by optical or IR selection

• identify obscured AGN
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Athena WFI survey
Chandra/XMM surveys

x  Chandra detections 
    CDFS 7Ms (Luo+ 17) 
      COSMOS Legacy (Marchesi+16) 
      AEGIS (Nandra+15) 

• only a handful at z>5 
• faint counterparts, 

uncertain photo-z

Chandra 7Ms flux limit



The evolution of the space density of X-ray 
detected AGN
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Lines+shading = Aird et al. (2015)

• Strong decline in space densities at z > 3 
for all luminosities 

Vito et al. (2018) 
(see also Brusa+09, Civano+12, 
Ueda+14, Vito+14, Weigel+15, 
Georgakakis+15, Khorunzhev+18) 

High redshift



X-ray searches for the earliest SMBHs

- “sub-threshold” detections

• deep NIR+optical imaging (HST/CANDELS) 
provides moderate samples of galaxies at z>5


• Attempt to improve  X-ray source 
identification using galaxy positions   

• see also Fiore+12, Giallongo+15, Cappelluti+16


H-band image + X-ray contours

Giallongo et al. (2019)

identifies additional AGN    
=>  
• constraints on faint end of 

UV luminosity function 
(connection to opt+IR 
selected quasars)  

• role of AGN in re-ionization,)



X-ray searches for the earliest SMBHs
- stacking

• deep NIR+optical imaging (HST/CANDELS) 
provides moderate samples of galaxies at z>5


• Stack the X-ray data at the galaxy 
positions

e.g. Vito+16 
•  X-ray signal likely dominated by star formation processes 
•  Places upper limits on BH accretion density due to low-LX 

AGN in these very high-z galaxies 



X-ray searches for the earliest SMBHs
- what’s left…?

• Background fluctuations!

see next talk by Nico Cappelluti

•correlation between infrared 
and X-ray background 
fluctuations 
  => tracer of early BHs

X-ray

Infrared

Cappelluti+13,16



Tracking the early growth of SMBHs 
with Athena
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Wide:  ~48 deg2

Deep:  ~6 deg2                          

`

~22.5 Ms survey programme (tentative plan):      
         4x1.3Ms + 8x950ks +  108x90ks

• Current surveys (Chandra) 
have the sensitivity to detect 
low-to-moderate LX AGN 
(1043-44 erg s-1) at z>6, but 
lack the area coverage

➡ Athena: 
• large-collecting area 

(1.4m2) 
• large field-of-view (40’x40’) 
• PSF ~5” HEW across 

the FOV 
• survey speed up to 100 

times faster than 
Chandra



Tracking the early growth of SMBHs 
with Athena
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Athena WFI survey
Chandra/XMM surveys

x  Chandra detections 
    CDFS 7Ms (Luo+ 17) 
      COSMOS Legacy (Marchesi+16) 
      AEGIS (Nandra+15) 
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Athena WFI survey
Chandra/XMM surveys

◇Athena predicted 
high-z detections 
(~25Ms multi-tiered 
survey)



Counterparts to Athena X-ray sources (in the early 2030s)

JWST

ALMA

Euclid

ESA/C. Carreau

LSST

Todd Mason, Mason Productions Inc. / LSST Corporation

• ~50 deg2 Athena ‘shallow’ (~90ks) 
surveys will be well matched in 
depth/area to forthcoming deep 
optical/near-infrared surveys                        
(e.g. Euclid, HyperSuprimeCam, LSST)


• JWST imaging required to identify 
counterparts in deep Athena 
surveys (~6 deg2, 950ks)


• Athena will pinpoint              
(low-L/obscured) AGNs within 
samples of early (z>6) galaxies - 
efficiently tracing SMBH 
accretion activity 

• Further follow-up with ELTs,  
ALMA, JWST for 

• spectroscopic redshifts

• host properties (stellar mass, star formation 

rates, dust masses etc.)



Athena constraints vs. models

Amarantidis+19

see also: Ricarte+18, Valiante+18, 
DeGraf+19, Griffin+19

Comparison of the high-z AGN 
luminosity function from a range of 
hydrodynamic and semi-analytic 
simulations 
vs. predicted Athena constraints 
• models often high vs. empirical predictions 

(extrapolations) - also true at lower z!

• order of magnitude differences between 

models - Athena will provide vital 
constraints!


• some models do not extend to highest LX    
- volume limitations?



Athena constraints vs. models

• Detection of an AGN with 
LX = 1043 erg s-1   at z = 6                                  
=>   MBH >~ 2x106 Msun     
(assuming ~Eddington limited)


• Detection of an AGN with 
LX = 1044 erg s-1   at z = 8                                  
=>   MBH >~ 2x107 Msun     
(assuming ~Eddington limited)

Athena will not identify SMBH seeds 
immediately after their formation

but samples will constrain the extent 
of early mass growth, where this 
growth occurs within the z>6 galaxy 
population, and the possible seed 
mechanisms, ruling out certain 
classes of models Aird, Comastri et al. 2013, models by Marta Volonteri
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Beyond Athena: 
AXIS and Lynx

AXIS

To detect accreting 
~104-5 M⦿ black holes in 
the z~6-10 Universe, 
requires ~1" resolution



Summary

• Bulk of the mass growth of supermassive black holes is due to accretion 
at z<3 and is well-characterised 

• But initial seeds likely formed in particular environments at very high z>10, 
with subsequent growth by merging but (mostly) accretion 

• Latest optical/NIR surveys starting to sample quasar population at z>6      
- challenges for seed models to build most massive black holes 

• Current X-ray surveys reveal strong drop in space density of AGN at all 
luminosities at z>3 - very few sources found at z>5 even though Chandra 
has the sensitivity to detect them 

• To characterise early growth need to reach deepest Chandra flux limits 
over large sky areas (6-50 deg2) coverage =>  

• To directly see the initial growth of ~104-5 M⦿ black holes requires order of 
magnitude improvement in sensitivity and wide-area coverage => 


