AGN PHYSICS
Corona (temperature) and Disk (density)

Andy Fabian
Institute of Astronomy, University of Cambridge, UK
with help from many collaborators including Anne Lohfink, Jiachen Jiang, Javier Garcia, Michael Parker, John Tomsic
WHAT DETERMINES CORONAL TEMPERATURE?
Coronal properties

• Corona in AGN is responsible for all X-ray flux >1 keV

• 15<kT<150 keV, most 50-150 keV (Fabian+15,17; Ricci+17; Tortosa+17; Lanzuisi+19)

• R<10 r_g for much of the power (Kara+16; Chartas+17)

• Some could be outflowing (Beloborodov99, Malzac+01, Wilkins+14), probably not static!

• Lower part dominates reflection, upper part dominates observed power-law
CORONA IS RADIATIVELY COMPACT
Dimensionless compactness parameter, GuilbertFabianRees83

\[\ell = \frac{L}{R m_e c^3} \]

\[l = \left(\frac{m_p}{m_e} \right) \left(\frac{R}{R_S} \right)^{-1} \left(\frac{L}{L_{Edd}} \right) \]

For AGN, \(\ell \) typically 10-1000
Compton cooling time < light crossing time
Photon Column Density = Density \times Size

\[N_\gamma = \frac{L}{4\pi R^2 c E_\gamma} R \]

\[N_\gamma = 2 \times 10^{26} \left(\frac{L}{L_{\text{Edd}}} \right) \left(\frac{R_S}{R} \right) \left(\frac{E_\gamma \text{ MeV}}{E_\gamma} \right) \]

\[\tau = 200 \left(\frac{\sigma}{\sigma_T} \right) \left(\frac{L}{L_{\text{Edd}}} \right) \left(\frac{R_S}{R} \right) \left(\frac{E_\gamma \text{ MeV}}{E_\gamma} \right) \]
Schematic from Fabian94

PAIR PRODUCTION: electron-positron pairs form when photons and/or particles collide at energies $> m_e c^2 = 511 \text{keV}$

photon-photon collisions: $\gamma + \gamma \rightarrow e^\pm$ requires $\frac{\epsilon_1}{m_e c^2} \frac{\epsilon_2}{m_e c^2} > 2$

Svensson, 82,84, Zdziarski 85, many other papers and workers 80s + 90s

Concept of PAIR THERMOSTAT introduced

Schematic from Fabian94
PAIR PRODUCTION: electron-positron pairs form when photons and/or particles collide at energies \(m_e c^2 = 511 \text{keV} \).

Photon-photon collisions: \(\gamma + \gamma \rightarrow e^\pm \) requires \(\frac{\epsilon_1}{m_e c^2} \frac{\epsilon_2}{m_e c^2} > 2 \).

Svensson, 82, 84, Zdziarski 85, many other papers and workers 80s + 90s

Concept of PAIR THERMOSTAT introduced

Schematic from Fabian94
Effect of addition of nonthermal particles
- Hybrid Plasma

\[\frac{I_h}{I_s} = 1 \]

\[\frac{I_h}{I_s} = 0.1 \]

Uses BELM, similar results for EQPAIR

Fabian, Lohfink, Belmont, Malzac, Coppi 17
See Zdziarski+93, Ghisellini+93, Coppi99...
MAXI J1820+070

D. J. K. Buisson et al.
With GR corrections

\[\ell_{\text{nth}}/\ell_h = 0.0 \]

\[\ell_{\text{nth}}/\ell_h = 0.01 \]

\[\ell_{\text{nth}}/\ell_h = 0.09 \]

\[\ell_{\text{nth}}/\ell_h = 0.17 \]

\[\ell_{\text{nth}}/\ell_h = 0.23 \]

\[\ell_{\text{nth}}/\ell_h = 0.29 \]

\[\ell_{\text{nth}}/\ell_h = 0.33 \]
High Density Reflection

Measuring the density of the reflecting surface
HIGH Density Reflection Models appropriate

Coronal power

\[f \]

\[M (M_\odot) \]

\[\log \text{density} = \]

AGN

“Standard”

BHB

10^8

10^7

10^6

10 M_\odot

Garcia+16

from Svensson & Zdziarski94
Garcia+16

E^*F_E (erg cm$^{-2}$ s$^{-1}$)

E (eV)

$\Gamma=2.3$, $\xi=50$

$\log(n_e)=15$

$\log(n_e)=16$

$\log(n_e)=17$

$\log(n_e)=18$

$\log(n_e)=19$

Incident
High Density Fit to low state

IRAS13224-3809

$n=10^{19}$

Energy (keV)
Densities $>10^{19}$ cm$^{-3}$

- Suite of models built by Michael Parker and Jiachen Jiang using the late Randy Ross’ code REFLIONX_HD (see Fabian&Ross07).
- “There are shifts of ionization potential and K-threshold energies, albeit very minor ($<<$eV). The shift grows with effective charge ($Z_{eff}=Z-N+1$). Meanwhile, there are virtually no shifts in the energy/wavelength of lines (Deprince et al. 2018, 2019).
- Dielectronic Recombination (DR) suppression affects heating/cooling and ionization balance. Current tests indicate enhancement of soft flux and Fe K emission, but this effect might depend on ionization (still under investigation, Garcia et al. in prep.)”
- REFLIONX_HD models applied to Cyg X-1 (Tomsick+18) and GX339-4 (Jiang+19a); RELXILLD used for low mass AGN (Jiang+19b).
Radiation Pressure Dominated

Gas Pressure Dominated

Jiang+19
The graph illustrates the relationship between the mass accretion rate (denoted as \dot{m}) and the black hole mass (m_{BH}) on a logarithmic scale. The black hole mass is plotted on the x-axis, while the mass accretion rate is on the y-axis. Different lines represent different values of a parameter f, with $f=0$, $f=0.7$, and $f=0.9$. The regions labeled as "radiation" and "gas" indicate different regimes of mass accretion processes. The horizontal lines at $10\% m_{\text{Edd}}$ and $1\% m_{\text{Edd}}$ provide reference points, with m_{Edd} denoting the Eddington luminosity.
• High density reflection is important for BHB and AGN with $M_{BH} < 5 \times 10^7 \, M_{\text{sun}}$.

• Extraction of energy from disc to corona plays an important role.

• Discs in luminous AGN are radiation-pressure supported and discs in BHB gas-pressure supported following results from SZ94 (i.e. modified SS73).
NGC4151

Lubinski+10 see alsoKeck+15, Beuchert+17

INTEGRAL

Exteme flux states of NGC 4151

OSSE, Comptel
INTEGRAL/PICsIT SPI

Lubinski+10 see alsoKeck+15, Beuchert+17
NuSTAR results

Blue AGN, Red BHB

$R=10r_g$ unless indications otherwise Fabian+15