ARIEL as a powerful machine for exomoon/Trojan detection and TTVs

Luca Borsato - luca.borsato@unipd.it Giampaolo Piotto, Valerio Nascimbeni

ARIEL InfraRed Spectrometer (AIRS), R = 30 - 200 between 1.95 and 7.8 μ m.

Fine Guidance Sensors (FGS), 3 photometric channels, between 0.5 and 1.2 μ m and low resolution NIR spectrometer from 1.2 – 1.95 μ m.

- + Cadence of up to 5 Hz, simultaneously at multiple wavelengths.
- + Targeting bright stars will lead to high SNR signal.
- + Uninterrupted observation of transit, out-of-transit and phase-curves.

Key points

ARIEL InfraRed Spectrometer (AIRS), R = 30 - 200 between 1.95 and 7.8 μ m.

Chromatic light-curves from the spectra

Fine Guidance Sensors (FGS), 3 photometric channels, between 0.5 and 1.2 μ m and low resolution NIR spectrometer from 1.2 – 1.95 μ m.

High precision photometry at zero cost

- + Cadence of up to 5 Hz, simultaneously at multiple wavelengths.
- + Targeting bright stars will lead to high SNR signal.
- + Uninterrupted observation of transit, out-of-transit and phase-curves.

Outstanding sampling of the light curve

timing, ingress/egress, and deformations

IR photometry: less contribute from limb darkening and stellar activity

Transit Timing Variation (TTV)

2-body system

Transit Timing Variation (TTV)

Kepler-9 – 2 transiting planets close MMR 2:1 => anticorrelated TTV Borsato+ 2014

Transit Timing Variation (TTV) Image: state of the state

Establish **planetary nature** of transiting planets

multi-planet system characterisation

- mass of the perturber (perturbers if more than one planets)
- orbital parameter determination and degeneracy breaking

architecture characterisation: ~MMR, formation and evolution processes

complementary to RV for mass determination

Importance of the TTV baseline

Exomoon - TTV/TDV & transit features

Kipping+2012

Exomoon - TTV/TDV & transit features

Trojans

Transit detection: if small mutual-inclination & large radii

shift ΔT of the TT_{LC} & TT_{RV}

eg. Ford & Gaudi (2006); Ford & Holman (2007); Giuppone+ (2012); Janson (2013); Fabrycky+ (2014); Leleu+ (2017)

LC examples & TT precision

test WASP-76b West+ (2016) V = 9.5 $R_{\star} = 1.73 R_{\odot}$ $R_{b} = 1.83 R_{Jup}$ $P_{b} = 1.81 d$ $T_{41} = 3.7 h$

texp = 1.5s

 $\sigma_{TT} = 100. / SNR_{transit} min$ Mazeh+ 2013; Holczer+ 2016 $\sigma_{TT,FGS1} = 4.4 \text{ s} | \sigma_{TT,FGS2} = 6.2 \text{ s}$

Stellar activity & starspots

FRONTIERA

eg. Czesla+ 2009; Reiners+ 2010; Carter+ 2011; Oshagh+ 2013, 2014, 2015; Morris Brett+ 2018; Oshagh 2018

What do we need to know?

What is the **exposure/sampling time**?

Access to ARIELsim & simulate a few targets with different characteristics:

- magnitude, R_{*}, spectral type
- R_p, period, temperature
- given number of transits (observing baseline coverage) to compute:
 - SNR(transit) in different bands
 - error on the transit time, σ_{TT} (analytically and transit fit)
 - possible TTV/TDV signals for different perturbers
 - + stellar activity models

Target selection

Extend known multiple-planet system around bright stars from K2 and TESS

Warm-Jupiters (P~10-200 d):

- larger orbit increases possibility of stable exomoons and Trojans
- > 50% in Kepler data are in multiple-planet systems (Huang+ 2016)

Stellar activity & starspots

Oshagh 2010 Characteristics of astrophysical "noise" signals in RV and photometric exoplanet searches

	~ ~	RV	Photometry	
Noise source	Timescale	$(m s^{-1})$	(ppm)	Treatment
Oscillations	5–15 min	0.2–3	100–300	RV: at least 15 min exposure Photometry: binning the light curve into 15-min bins after detection of transit signal
Granulation	15 min to 24 hr	1–30	50–500	RV: three measurements per night with 1–2 h separation and averaging them
				Photometry: binning the light curve into 1-h bins after detection of transit signal
Magnetic activity	Several days	1–200	50-10,000	RV: finding correlation between measured RVs and activity indi- cators; if any correlation found, remove RV jitter by modeling Photometry: model out-of- and in-transit portions of light curve