Stellar and Exoplanetary Atmospheres Bayesian Analysis Simultaneous Spectroscopy

Giuseppe Morello

Image credit: Coughlin, J. F. (PhD thesis)

$$\mu = \cos\theta \quad \theta \quad ($$

Quadratic
$$rac{I_{\lambda}(\mu)}{I_{\lambda}(1)} = 1 - u_1(1-\mu) - u_2(1-\mu)^2$$

Square-root
$$rac{I_\lambda(\mu)}{I_\lambda(1)} = 1 - v_1(1-\sqrt{\mu}) - v_2(1-\mu)$$

NEW Power-2

2-coefficients

-2
$$\frac{I_{\lambda}(\mu)}{I_{\lambda}(1)} = 1 - c \left(1 - \mu^{\alpha}\right)$$

Claret-4

$$\frac{I_{\lambda}(\mu)}{I_{\lambda}(1)} = 1 - \sum_{n=1}^{4} a_n \left(1 - \mu^{n/2}\right)$$

observer

Espinoza & Jordan 2016; Morello et al. 2017; Maxted 2018

Why fitting for the stellar limb-darkening coefficients?

Stellar science

- Testing the stellar-atmosphere models
- The effect of stellar activity is not well known
- No other techniques are available (in almost all cases)

Exoplanetary science

- Avoiding potential biases in the exoplanet radius and orbital parameters
- Wrong radius → mean density
 → structure model
- Avoiding potential biases in the transmission spectrum of the exoplanetary atmosphere

But

Strong parameter degeneracies may hamper convergence of the light-curve fits

Impact of geometric approximations

Geometry of stellar-atmosphere models

Plane-parallel

Spherical

Stellar intensity profiles

 $\mu = \cos\theta$

Parametric intensity profiles (1)

With *theoretical* limb-darkening coefficients (best-fit $I(\mu)$)

Parametric intensity profiles (2)

With empirical limb-darkening coefficients (best-fit light-curve)

Transit depth bias

Transit light-curve models

NOTE: Because of parameter degeneracies the transit depth and orbital parameters can be significantly biased even if the fitting residuals are very small!

WFC3-like exoplanet spectroscopy

Methods and results

SEA BASS

Stellar and Exoplanetary Atmospheres Bayesian Analysis Simultaneous Spectroscopy

INFRARED TRANSITS

or

- Two-coefficient limb-darkening laws,
- Fixed limb-darkening coefficients
- => geometric parameters (orbital, transit duration)

VISIBLE/UV TRANSITS

Informative Bayesian priors on the geometric parameters

Fully empirical four-coefficient limb-darkening

Morello et al. 2017; Morello 2018

Simulation results

star M5V (T_{eff} = 3084, log g = 5.25), STIS/G430L

Spitzer/IRAC + HST/STIS observations (1)

Morello 2018

Spitzer/IRAC + HST/STIS observations (2)

Morello 2018

Spitzer/IRAC + HST/STIS observations (3)

Morello 2018

~50% of *HST*/WFC3 transits have systematic residuals when limb-darkening is not fitted

Tsiaras et al. 2018

Other disturbing effects

Exomoons

Exorings

Stellar activity

Exoplanet phase-curve

Kipping 2009a, b, 2011; Zuluaga et al. 2015; Sarkar et al. 2018; Showman & Guillot 2002; Morello et al. (in prep.)

Conclusions

- Fitting for (four) stellar limb-darkening coefficients in transit light-curve fits to avoid biases in the exoplanet parameters;
- Also important for exoplanet spectroscopy;
- Highly significant for HST/WFC3 and next-generation instruments onboard JWST and ARIEL;
- Multiwavelength Bayesian approach (SEA BASS) to minimize the biases and break parameter degeneracies;
- Successfully applied to HST/STIS observations of HD209458b;

Next steps:

- Priors from stellar physics (testing stellar models on Kepler/K2, TESS data);
- Disentangling other astrophysical signals.

Thank you