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accuracy in the estimated transit parameters and limb-darkening coe�cients in the visible,

if infrared observations are also available. Finally, Section 6 discusses the results of our

analysis, with emphasis on the synergies between JWST and Kepler, and on future surveys.

2. Describing stellar limb-darkening

2.1. Limb-darkening parameterizations

In exoplanetary studies, the stellar limb-darkening profile is typically described by

an analytical function I�(µ), where I denotes the specific intensity, µ = cos ✓, ✓ is the

angle between the surface normal and the line of sight, and the � subscript refers to the

monochromatic wavelength or e↵ective wavelength of the passband at which the specific

intensities are given. For circular symmetry, µ =
p
1� r2, where r is the projected radial

co-ordinate in units of the stellar radius.

Numerous functional forms to approximate I�(µ) have been proposed in the literature.

In the study of exoplanetary transits, the most commonly used of these limb-darkening

‘laws’ are:

1. the quadratic law (Kopal 1950),
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hereinafter referred to as ‘claret-4’. In this paper, we recommend the use of a

limb-darkening law, which is not common (if present) in the exoplanet literature,

and, like the quadratic and square-root laws, relies on two coe�cients, but only a single

power of µ:

4. the ‘power-2’ law (Hestro↵er 1997),

I�(µ)

I�(1)
= 1� c (1� µ↵) (4)

We note that the quadratic and square-root laws are subsets of the claret-4 prescription,

with a
1

= a
3

= 0, a
2

= u
1

+ 2u
2

, a
4

= �u
2

(quadratic) and a
3

= a
4

= 0 (square-root).

The claret-4 law can provide a more accurate approximation to model-atmosphere limb

darkening, but at the expense of using a larger number of coe�cients.

The quadratic, square-root, and claret-4 laws rely on linear combinations of fixed

powers of µ. The power-2 form, incorporating an arbitrary power of µ, is proposed as it

o↵ers more flexibility and a better match to model-atmosphere limb-darkening than do

other two-coe�cients forms (Section 4.2). It is a subset of the claret-4 law only for ↵ = 1/2,

1, 3/2, or 2.

2.2. Intensity distributions: plane-parallel vs. spherical

Theoretical limb-darkening coe�cients can be obtained from stellar-atmosphere models,

by fitting a parametric law (such as Equations 1–4) to detailed numerical evaluations of

I�(µ). Tables of theoretical limb-darkening coe�cients as a function of stellar parameters

(usually the e↵ective temperature, gravity and metallicity) have been published by several

authors for various photometric passbands. Most calculations are based on plane-parallel

atmosphere models (Claret 2000, 2004, 2008; Claret et al. 2012, 2013; Sing 2010; Howarth

Espinoza	
  &	
  Jordan	
  
2016;	
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  2018	
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Section 4.5 then focuses on the potential errors in “narrow-
band exoplanet spectroscopy” over short wavelength ranges,
specifically in the context of Hubble Space Telescope (HST)/
WFC3 observations. Section 5 examines the ability to fit a set
of transit parameters and limb-darkening coefficients on transit
light-curves, and develops an optimal strategy to maximize the
accuracy in the estimated transit parameters and limb-
darkening coefficients in the visible, if infrared observations
are also available. Finally, Section 6 discusses the results of our
analysis, with emphasis on the synergies between the James
Webb Space Telescope (JWST) and Kepler, and on future
surveys.

2. Describing Stellar Limb-darkening

2.1. Limb-darkening Parameterizations

In exoplanetary studies, the stellar limb-darkening profile is
typically described by an analytical function I ml ( ), where I
denotes the specific intensity, cosm q= , θ is the angle between
the surface normal and the line of sight, and the λ subscript refers
to the monochromatic wavelength or effective wavelength of the
passband at which the specific intensities are given. For circular
symmetry, r1 2m = - , where r is the projected radial co-
ordinate normalized to a reference radius.

Numerous functional forms to approximate I ml ( ) have been
proposed in the literature. In the study of exoplanetary transits, the
most commonly used of these limb-darkening “laws” are:

1. the quadratic law (Kopal 1950),
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hereinafter referred to as “claret-4.” The quadratic, square-root,
and claret-4 laws rely on linear combinations of fixed powers of
μ. In this paper, we advocate an alternative two-coefficient law
incorporating an arbitrary power of μ which, to the best of our
knowledge, has not previously been considered in the
exoplanet literature (and which we initially constructed
independently):

4. the “power-2” law (Hestroffer 1997),
I
I

c
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1 1 . 4
m
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l
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We find that this form offers more flexibility and a better match
to model-atmosphere limb-darkening than do other two-
coefficient forms (Section 4.2). The claret-4 law can provide
a more accurate approximation to model-atmosphere limb-
darkening than other forms, but at the expense of using a larger
number of coefficients. We note that the quadratic and square-
root laws are subsets of the claret-4 prescription, with

Figure 1. Left panel: illustration of a plane-parallel atmosphere. Right panel: illustration of a spherical-geometry atmosphere (the scale is exaggerated for easier
visualization). Note that, differently from the plane-parallel case, the line of sight for the chosen angle μ does not intersect the shell corresponding to the radial optical
depth 1t = .

Table 1
Input Parameters (Effective Temperature, Gravity) for Solar-abundance

PHOENIX Stellar-atmosphere Models Adopted for the Simulations

Sp. type Teff glog [M/H]

M5 V 3084 5.25 0.0
M0 V 3759 4.75 0.0
F0 V 7250 4.25 0.0

Note.Default values for other parameters are specified in Allard et al. (2012).
The corresponding spectral types are based on the calibration reported in Gray
& Corbally (2009).
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(Mandel & Agol 2002; Soutworth et al. 2004; Pál 2008) Two-
coefficient laws are typically used for this purpose (e.g.,
Soutworth 2008; Claret 2009; Kipping & Bakos 2011a, 2011b;

Hébrard et al. 2013; Müller et al. 2013), as parameter
degeneracies hamper convergence when fitting higher-order
models (e.g., the claret-4 characterization).
Measuring empirical limb-darkening coefficients is impor-

tant to test the validity of the stellar-atmosphere models and, if
results are sufficiently accurate, to select the best theoretical
models. Furthermore, fixing limb-darkening coefficients at
incorrect theoretical values can significantly bias other fitted
transit parameters, leading to incorrect inferences about
planetary sizes and masses, or confusing the spectral signature
of a planetary atmosphere (Csizmadia et al. 2013). In active
stars, the presence of dark or bright spots on the surface can
change the “effective” limb-darkening coefficients relative to
the unperturbed case, as well as the inferred stellar parameters
adopted to compute the theoretical coefficients (Ballerini et al.

Figure 3. Top to bottom: angular intensity distributions for the M5 V, M0 V, and F0 V models of Table 1. Symbols represent spherical-geometry, passband-integrated
intensities for STIS/G430L (purple squares), STIS/G750L (blue “*”), WFC3/G141 (green “+”), IRAC/ch1 (yellow “x”) and IRAC/ch4 (red dots); the
corresponding plane-parallel intensities are shown as continuous lines of the same colors. The right-hand panels show the limb region (0.1�μ�0.0) at a larger scale
and the μ angle corresponding to r 1Rosst =( ) .

Table 2
Input Transit Parameters Adopted in Simulations

p aR i (°) e b P (days)

0.15 9.0 90.0 0 0.0 2.218573
0.15 9.0 86.81526146 0 0.5 2.218573

Note.Transit parameters are similar to those of HD189733b. p R Rp *= is the
ratio of planet-to-star radii, a a RR *= the orbital semimajor axis in units of the
stellar radius, i the orbital inclination, e the eccentricity, b a icosR=( ) the impact
parameter, and P the orbital period.
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depths over the five passbands are 47, 44, and 102ppm, again
from the coolest to the hottest model. The quadratic-law
coefficients have the largest scatter in the best-fit transit depth
across the different passbands for all models, with peak-to-peak
amplitudes of 250, 164, and 107ppm.

Even though the true value of the transit depth is not known in a
“real-world” scenario, the presence of biases can be revealed by
time-correlated noise in the light-curve residuals. Figure 6 shows
the residuals between the exact light-curve and the best-fit
parametric model for the M5V star in the WFC3 passband. The
full list of light-curve residuals is reported in Figure 23. The
amplitudes of the time-correlated residuals (maximum discrepan-
cies from zero) are in the ranges 97–456, 8–105, and 11–75ppm
with quadratic, power-2, and claret-4 models respectively.
Residuals at infrared wavelengths are typically smaller than in
the visible, as expected. Neilson et al. (2017) report similar
amplitudes for the residuals between the exact light-curves,

computed with their CLIV stellar-atmosphere models, and
parametric light-curve models. For comparison, residuals with
∼10 ppm root mean square (rms) amplitude have been obtained
from the phase-folded Kepler photometry of several targets (e.g.,
Barnes et al. 2011; Müller et al. 2013), and ∼50–200 ppm rms
amplitude is typically obtained for the white light-curves observed
with the HST/WFC3 (e.g., Deming et al. 2013; Tsiaras et al.
2016a, 2016b).
It is possible that better results would be obtained if the limb-

darkening coefficients were fitted adopting a different sampling in
μ (e.g., uniform in r rather than in μ), a different method (e.g.,
imposing flux-conservation), and/or using spherical intensities
(e.g., Sing 2010; Claret & Bloemen 2011; Howarth 2011a;
Espinoza & Jordán 2015). A detailed study of the different
approaches is beyond the scope of this paper, but the analysis in
Section 4.4 provides some clear indications.

Figure 7. Top panel: differences between the best-fit and the input transit depths for the edge-on transits in front of the M5 V model, using empirical quadratic (green,
upward triangles), square-root (yellow, downward triangles), claret-4 (red diamonds), and power-2 (blue circles) limb-darkening coefficients; the expected values
(Equations (7)) are indicated with black “+.” Middle, bottom panels: the same for the M0 V and F0 V models.
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With this working definition, the best-fit model parameters for
any of our simulated transit light-curves are expected to deviate
from their input values according to:

p
p

r
7expected

2 input

0

2

�
⎛
⎝⎜

⎞
⎠⎟ ( )

a
a

r
8R

R
,expected

,input

0
� ( )

i i . 9expected input� ( )
Table 3 reports the ranges of r0 over the five instrument
passbands for the given stellar model, the corresponding
percentage variation in transit depth, p R Rp

2 2
*= ( ) , and the

absolute variation evaluated at p 0.15input = . In the analytical
approximations represented by Equations (7), (8), we find the
apparent stellar radius to be systematically smaller than the radius

of the uppermost layer of these models by 0.05–0.1% for the M
dwarfs, and up to ∼0.2% for the F0-star model; the corresp-
onding percentage errors in transit depths are about twice as

Figure 5. Top panel: differences between the best-fit and the input transit depths for the edge-on transits in front of the M5 V model, using theoretical quadratic
(green, upward triangles), square-root (yellow, downward triangles), claret-4 (red diamonds), and power-2 (blue circles) limb-darkening coefficients; the expected
values (Equations (7)) are indicated with black “+.” Middle, bottom panels: the same for the M0 V and F0 V models.

Table 4
Parameters of the Gaussian Priors Adopted in Section 5.3

aRm ( ) aRs ( ) im ( ) is ( )
b=0 9.0042 0.004 90 0.18
b=0.5 9.0042 0.006 86.81526146 0.01

Note. aRm ( ) and im ( ) are the set to the expected transit parameter values, aRs ( )
and is ( ) are the error bars obtained from the corresponding light curves in the
IRAC/ch4 passband, with 100 ppm noise level, 8.4 s sampling time, when
fitting for p, aR, i, normalization factor, and power-2 limb-darkening
coefficients.
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large. For the case of a transiting hot Jupiter (p=0.15), the
discrepancies in transit depth are at the level of ∼20, 40, and
100ppm for the two M dwarfs and for the F0 model,
respectively. The discrepancies measured for the F0 model
currently represent practical upper limits for exoplanet host stars,
given that ∼99% of the current population are cooler, and hence
have less extended atmospheres (for given glog ). The wave-
length-dependence of the apparent radius is negligible over the
parameter space explored here, with a peak-to-peak amplitude of
11ppm, in transit depth, from visible to mid-infrared wave-
lengths in the worst-case scenario (see Table 3).

4.2. Accuracy of the Theoretical Limb-darkening Laws

We fitted the limb-darkening laws to the plane-parallel intensity
profiles by adopting a simple least-squares method in the fits. We
checked, both by using subsets of the precalculated intensity grids
and interpolating at different angles, that similar results would be
obtained using a uniform sampling in μ. Figure 4 shows the
corresponding best-fit models, hereinafter referred as “theoretical”
limb-darkening models, and their residuals, for the case of the
M5V observed in the WFC3 passband. The full list of models and
the relevant residuals are reported in Figure 22 (Appendix A). The
power-2 law (Equation (4)) outperforms the other two-coefficient
laws at describing the stellar limb-darkening of all stars observed at
near to mid-infrared wavelengths with the HST/WFC3 and
Spitzer/IRAC instruments; in some cases, the power-2 model
outperforms even the corresponding claret-4 one. At visible
wavelengths, the square-root and power-2 models have compar-
able success, while the claret-4 models fit best. The average errors
in specific intensity predicted by the power-2 models are in the
range 0.1%–1.0%, with a maximum error up to ∼5%–7% for the
F0V model in the visible passbands. The claret-4 models are more
uniformly robust among all the configurations, with average errors
in the range 0.05%–0.6% and maximum errors <4%. The
quadratic models are the least accurate of those tested, with
average errors in the range 1%–6% and maximum errors of up to
25% (for the M0V model in the WFC3 passband).

4.3. Transit Models with Theoretical
Limb-darkening Coefficients

We measured the potential biases in the model transit depths by
fixing the limb-darkening coefficients at the theoretical values
obtained from the plane-parallel stellar-atmosphere models and
fitting the exact light-curves described in Section 3.2. The free
parameters in the fit were p, the ratio of planet-to-star radii, aR, the
orbital semimajor axis in units of the stellar radius, and i, the
orbital inclination. We used a Nelder–Mead minimization
algorithm to find the values of these parameters which minimizes
the residuals between the model fits and the exact light-curves.
We then carried out Markov chain Monte Carlo (MCMC) runs
with 300,000 iterations to assess the robustness of the point
estimates. Unlike previous investigations reported in the literature
(e.g., Csizmadia et al. 2013), we seek to isolate the potential biases
arising from the analysis method, and particularly the use of
simplified geometry and a parameterization to characterize the
stellar limb-darkening. No other astrophysical sources of error are
considered in this study.
Figure 5 illustrates the differences between the best-fit transit

depths and input values for i 90 ;= n the expected values (from
Equations (7), (8)) are also indicated. For all stellar models, the
results are less dependent on the parametric law at longer
wavelengths; this is to be expected, since the limb-darkening is
smaller at longer wavelengths. In particular, the transit depths
obtained at 8μm (IRAC channel 4) are all within 45ppm of
expected values, or within 13ppm if adopting the power-2 or
claret-4 coefficients. Overall, the transit depths obtained using the
claret-4 coefficients deviate by less than ∼20ppm from expected
values, other than for the M5V model in the visible passbands,
where the discrepancy reaches 34and 80ppm for the STIS/
G750L and STIS/G430L passbands. The peak-to-peak amplitudes
in best-fit transit depths over the five passbands are 94, 28, and
8ppm, going from the coolest to the hottest model. The results
obtained with the power-2 coefficients are more robust for the
cooler stars, and are within 44ppm of expected values, except for
the F0V model in the visible passbands, where the inferred transit
depths are 105 and 88ppm larger for the STIS/G750L and STIS/
G430L passbands. The peak-to-peak amplitudes in best-fit transit

Figure 6. Left panel: exact transit light-curves obtained with b=0 for the M5 V star in the WFC3/G141 passband. Right, top panel: residuals for the best-fit transit
models using theoretical quadratic (green), square-root (yellow), claret-4 (red), and power-2 (blue) limb-darkening coefficients. Right, bottom panel: residuals
obtained with the empirical limb-darkening coefficients.
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   Figure 23. Left panels: exact transit light-curves obtained with b=0. Right, top panels: residuals for the best-fit transit models using fixed quadratic (green), square-

root (yellow), claret-4 (red), and power-2 (blue) limb-darkening coefficients. The coefficients are fitted to the plane-parallel angular intensities. Right, bottom panels:
residuals obtained with the empirical limb-darkening coefficients.
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Figure 23. Left panels: exact transit light-curves obtained with b=0. Right, top panels: residuals for the best-fit transit models using fixed quadratic (green), square-
root (yellow), claret-4 (red), and power-2 (blue) limb-darkening coefficients. The coefficients are fitted to the plane-parallel angular intensities. Right, bottom panels:
residuals obtained with the empirical limb-darkening coefficients.
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Conclusions	
  
•  Fi_ng	
  for	
  (four)	
  stellar	
  limb-­‐darkening	
  coefficients	
  in	
  transit	
  light-­‐curve	
  fits	
  to	
  

avoid	
  biases	
  in	
  the	
  exoplanet	
  parameters;	
  
	
  

•  Also	
  important	
  for	
  exoplanet	
  spectroscopy;	
  
	
  
•  Highly	
  significant	
  for	
  HST/WFC3	
  and	
  next-­‐genera=on	
  instruments	
  onboard	
  JWST	
  

and	
  ARIEL;	
  
	
  

•  Mul=wavelength	
  Bayesian	
  approach	
  (SEA	
  BASS)	
  to	
  minimize	
  the	
  biases	
  and	
  
break	
  parameter	
  degeneracies;	
  

•  Successfully	
  applied	
  to	
  HST/STIS	
  observa=ons	
  of	
  HD209458b;	
  

Next	
  steps:	
  
	
  
•  Priors	
  from	
  stellar	
  physics	
  (tes=ng	
  stellar	
  models	
  on	
  Kepler/K2,	
  TESS	
  data);	
  

•  Disentangling	
  other	
  astrophysical	
  signals.	
  

Thank	
  you	
  


