ExoGAN Retrieving Exoplanetary Atmospheres

Using Deep Convolutional Generative Adversarial Networks

ARIEL meeting Roma – 03/10/2018

Tiziano Zingales

Neural networks structure

What is ExoGAN

- Generative Adversarial Network: are deep neural net architectures comprised of two nets, pitting one against the other (thus the "adversarial").
- It is made of two main neural nets (models):
 - * Discriminative model: distinguish samples in disguise;
 - * Generator model: Generate new samples that are as similar as the data.
 - # Original Version: Taehoon Kim (http://carpedm20.github.io)
 - + Source: https://github.com/carpedm20/DCGAN-tensorflow/blob/e30539fb5e20d5a0fed40935853da97e9e55eee8/model.py + License: MIT
 - # [2016-08-05] Modifications for Completion: Brandon Amos (http://bamos.github.io)
 - + License: MIT

[2017-11-02] Modifications for Exoplanetary science # contributors: Tiziano Zingales (1, 2), Ingo Waldmann (1) # + License: (1) UCL, (2) INAF/OaPa

What is a GAN

Absolutely no!

No!

Maybe, but no!

Yes!

Training the GAN

Binary cross-entropy of the Discriminator

$$V^{(D)} = -\left[\log D(x) + \log\left(1 - D\left(G(z)\right)\right)\right]$$

Where x is the input image, z is the latent variable and G(z) is the generated image

Usually we work with batches of data

$$V^{(D)} = -\left\{\sum_{x} \log D(x) + \sum_{z} \log (1 - D(G(z)))\right\}$$

Training the GAN

- The Discriminator wants to minimise the entropy of the net;
- The Generator wants to fool the Discriminator, thus it wants to maximise the entropy of the net;
- It is natural defining the value function of the Generator as:

$$V^G = -V^D$$

Some tests with human faces

2250 iterations

750 iterations

The training set

 10 million exoplanetary atmospheres varying CO, CO₂, H₂O and CH₄ abundances, equilibrium temperature, radius and mass of the planet.

- Input spectra do not show the parameters value, but a GAN can reconstruct it.
- From the available information it is possible to reconstruct the missing one (inpainting).

With M the mask (or the missing data) and y the input (incomplete) image

Brandon Amos (http://bamos.github.io) Completion Algorithm

Spectral reconstruction

Conclusion

- Neural networks can help us constraining the parameter space in a smarter way;
- GANs allow us to speed up a spectral retrieval by using informative priors;
- Algorithms optimised with AI can improve performances and precision of atmospheric retrievals.

Why using a neural net for astrophysical purposes?

- Because of the difficulty of approximating many intractable probabilistic computations that arise in maximum likelihood estimation and related strategies;
- Speed up the computing time required by many codes in astrophysics.

Convolutional Neural Networks

Training the GAN

for number of training iterations **do**

- for k steps do
 - Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
 - Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
 - Update the discriminator by ascending its stochastic gradient:

$$\theta_{d,k} = \theta_{d,k-1} - \eta_{\nabla_{\theta_d}} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right]$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\theta_{g,k} = \theta_{g,k-1} - \eta_{\nabla_{\theta_g}} \frac{1}{m} \sum_{i=1}^m \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Goodfellow et al. (2014)

With M the mask (or the missing data) and y the input (incomplete) image

$$\mathcal{L}_{contextual}(z) = \| M \odot G(z) - M \odot y \|_{2}$$

 $\mathcal{L}_{perceptual}(z) = \log (1 - D(G(z)))$
 $\mathcal{L} = \mathcal{L}_{contextual}(z) + \lambda \mathcal{L}_{perceptual}(z)$
 $\hat{z} = \arg \min_{z} \mathcal{L}(z)$

 $x_{reconstructed} = M \odot y + (1 - M) \odot G(\hat{z})$

Facial reconstruction

Spectral reconstruction

The results

$$A(\phi, \sigma_{\phi}) = \frac{1}{N} \sum_{i}^{N} \frac{(\phi_{i, recon} - \phi_{i})^{2}}{\phi_{i}^{2} + \sigma_{\phi_{i}}^{2}}$$

Training set parameters				Test set parameters			
Variable	$A(0 \sigma_{\phi})$	$A(1 \sigma_{\phi})$	$A(2\sigma_{\phi})$	Variable	$A(0\sigma_{\phi})$	$A(1 \sigma_{\phi})$	$A(2\sigma_{\phi})$
СО	64.4%	74.9%	80.8%	CO	62.8%	72.6%	78.2%
CO_2	93.7%	96.4%	97.3%	CO_2	94.2%	96.6%	97.4%
H_2O	86.3%	92.9%	94.8%	H_2O	89.6%	92.8%	93.9%
CH_4	80.3%	88.4%	91.9%	CH_4	80.3%	88.2%	91.6%
R_p	99.8%	99.8%	99.8%	\mathbf{R}_p	100.0%	100.0%	100.0%
M_p	88.8%	90.5%	91.6%	M_p	88.0%	89.7%	90.8%
T_p	89.4%	91.9%	93.1%	T_p	90.4%	92.2%	93.2%

The results

The results

