Synergy between ARIEL and HIRES

Nicoletta Sanna on behalf of HIRES Consortium & the ARIEL Science Team in Arcetri

HIRES

Rome 03/10/2018

HIRES capability

Wavelength coverage	Observing mode	R
0.4 – 1.8 µm	UHR	150,000
	HR	100,000
Possible extension in U e K bands	HR² (IFU+AO)	>100,000
	Possible MR	20,000

Exoplanets atmospheres in habitable zones

Community White Paper: Maiolino et al. 2013, ArXiV:1310.3163

N. Sanna

HIRES

Exoplanets atmospheres

In reflected light

In transmitted light

In transmitted light

HIRES advantages:

Texp \propto D² \rightarrow HIRES achieves same S/N as ARIEL in less time $(D = 39 \text{ m vs } D \sim 1.1 \text{ m} \longrightarrow 1200 \text{ times})$

Examples of HIRES expected performances :

- J = 6.0 _____ contrast ~ $5x10^{-5}$

- $J = 8.8 \longrightarrow contrast \sim 2x10^{-4}$

In transmitted light: signatures of life

In transmitted light: signatures of life

In transmitted light: signatures of life

Example: for Trappist 1-b HIRES can detect O_2 at 0.75 μ m in 25 transits and CO_2 at 1.57 μ m in 4 transits

HIRES

In transmitted light

HIRES limit:

It is a common user facility.

Only a (small) part of the time can be dedicated to transits. HIRES will mostly perform deep/detailed studies of a limited number of carefully selected targets.

Synergic with a ARIEL that is fully dedicated to the systematic study of the atmospheres of a large sample of transiting planets

High Spatial Resolution \longrightarrow Enhance the planet-to-star contrastIFUat the planet location with AO

High Spectral Resolution → Use high-resolution spectroscopy to disentangle the (velocity-shifted) reflected spectrum of the planet from the stellar spectrum that is acquired simultaneously in the IFU observation

N. Sanna

HIRES

Example: Proxima-b

HIRES can detect planet in few hours or few nights (depending on the AO adopted)

Simulation by HIRES Science WG1

N. Sanna

HIRES

Summary

Full spectral coverage 0.4 - 1.8 μm

```
HR (100,000 ÷ 150,000)
```

Planets atmospheres in transmission (O_2, CO_2)

HR² IFU study of reflected light from planets

Summary

Full spectral coverage 0.4 - 1.8 μm

```
HR (100,000 ÷ 150,000)
```

Planets atmospheres in transmission (O_2, CO_2)

HR² IFU study of reflected light from planets

HIRES will be synergic and complementary to ARIEL