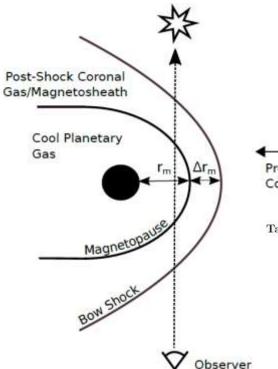


Investigating Atmospheric Escape with ARIEL (?)

A. Sozzetti, G. Guilluy, P. Giacobbe, A.S. Bonomo


INAF - Osservatorio Astrofisico di Torino

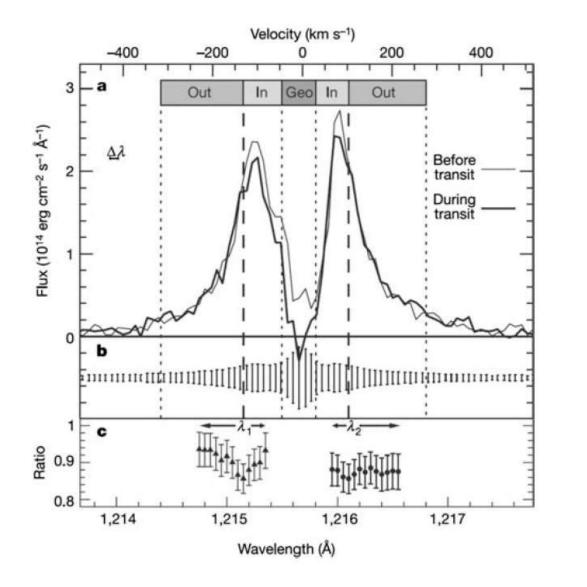
Atmosperic Mass Loss

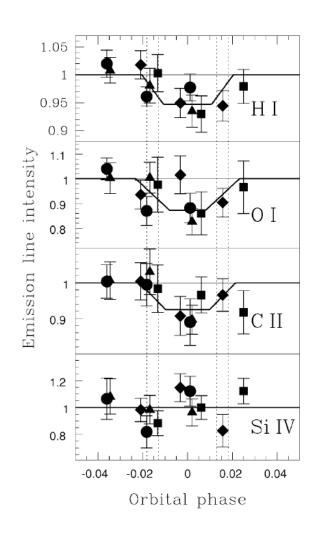
- It can substantially alter an exoplanet's bulk composition
- Evaporation-induced mass-loss likely the base for the 'Fulton Gap' observed in the small-radius regime of strongly-irradiated planets
- It is also the likely explanation for the observed paucity of short-period sub-Jupiter planets
- Understanding how atmospheric escape effects shape the present-day closein planet population (at all sizes/masses) is key for retracing evolutionary pathways and evaluate planet formation theories.
- Empirical constraints based on detection of extended atmospheres are much needed, but to-date there are only few.
- One of the difficulties is related to the identification of robust, unambiguous proxies of atmospheric escape in transmission

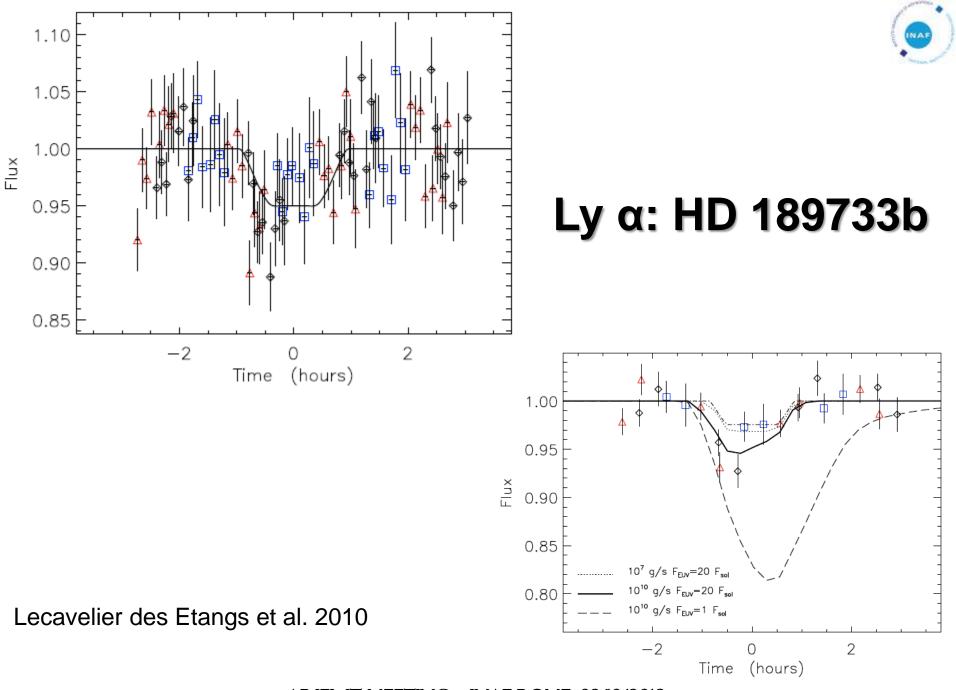
Atmospheric Escape: Diagnostics

Pre-Shock Coronal Gas

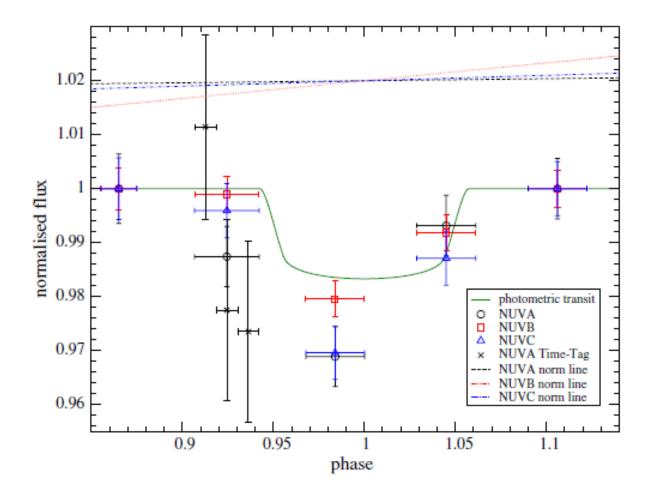
Turner et al. 2016


Table 4. Spectral lines predicted for the planetary gas by CLOUDY.

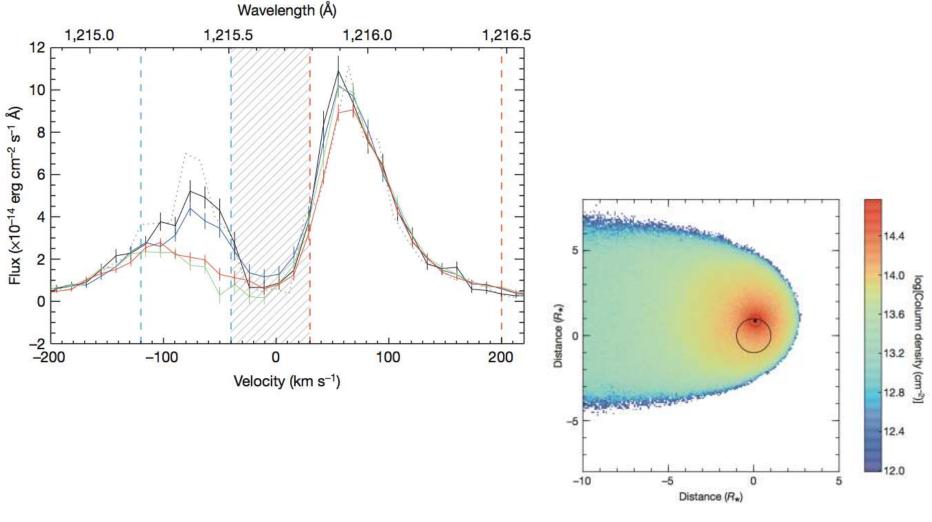

$\begin{array}{c} \text{Vacuum (Air) } \lambda \\ \text{[nm]} \end{array}$	Species	Transit Depth [%]	Previously Observed	$\begin{array}{c} \text{Vacuum } \lambda \\ [\text{nm}] \end{array}$	Species	Transit Depth [%]	Previously Observed
1083.3306 (1083.303)	He I	0.28	Ν	167.079	Al II	0.26 (blend)	Ν
866.452 (866.214)	Ca II	0.052	N	166.217	SI	0.26 (blend)	N
854.444 (854.209)	Ca II	0.026	N	165.7	CI	0.36	Ν
656.4614 (656.28)	H-alpha	0.021	Y (1)	157.591	Co II	0.03	N
396.959 (396.847)	CaII	0.16	N	156.133	CI	0.314	N
393.477 (393.366)	Ca II	0.19	N	153.1	Si II	0.24	Ν
388.9750 (388.865)	He I	0.019	N	150	Fe II	0.015	N
336.571 (336.474)	Ti II	0.044	N	147.274	Ni II	0.0535	Ν
323.8078 (323.714)	Ti II	0.036	N	140.037	Ni II	0.049	Ν
318.8667 (318.775)	He I	0.01	N	137.573	Ni II	0.083	N
285.2965 (285.213)	Mg I	0.24	Y (2)	135.605	SI	0.065	N
280.3531 (280.271)	Mg II	0.623	Y (3)	133.5	СП	0.44	Y (4)
258.9746 (258.897)	Mn II	0.11	N	132.4117	Ni II	0.294 (blend)	N
251.8226 (2517.47)	Si I	0.01	N	131.477	CI	0.215 (blend)	N
239.9997 (2399.27)	Fe II	0.217	N	130.766	Si II	0.362 (blend)	N
233.5123 (233.441)	S IV	0.0192 (blend)	N	126.332	Si II	0.381	N
233.5321 (233.46)	S IV	0.0192 (blend)	N	125.6	SII	0.162	N
221.500 (221.431)	Si I	0.025	N	125.068	CI	0.223	N
206.156 (206.09)	Co II	0.095	N	124.75	CI	0.33	Ν
202.6477 (202.582)	Mg I	0.84	N	123.329	CI	0.31	Ν
186.2789	Al III	0.03 (blend)	N	121.567	Lyman-alpha	12.4 (blend)	Y (5)
185.4716	Al III	0.03 (blend)	N	120.651	Si III	0.58 (blend)	Y (6)
185.3047	Si 1	0.03 (blend)	N	117.959	Si II	0.38	N
181.399	Si II	0.2 (blend)	N	116.681	CI	0.42 (blend)	N
181.7313	Mg I	0.08 (blend)	N	116.598	CI	0.42 (blend)	N
1786	Fe II	0.28	N	116.236	CI	0.42 (blend)	N
176.793	Si I	0.0843 (blend)	N	113.206	CI	0.64 (blend)	Ν
175.1823	CI	0.15 (blend)	N	113.112	NI	0.64 (blend)	Ν
174.424	Ni II	0.318 (blend)	N	113.046	CI	0.64 (blend)	N



Ly α: HD 209458b

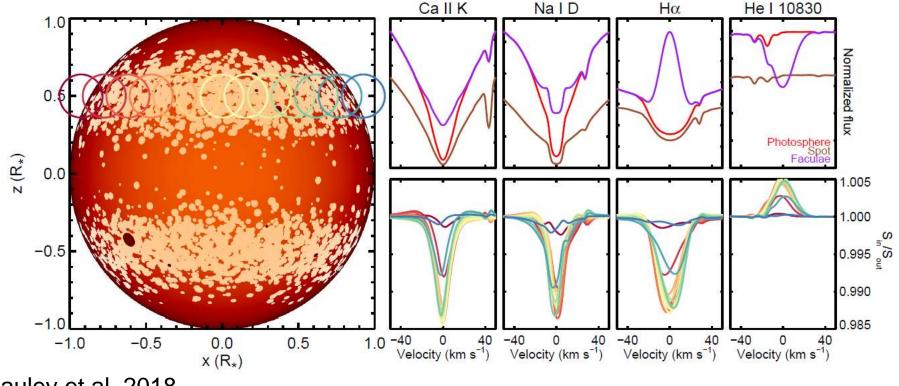

Vidal-Madjar et al. 2003

NUV (Mg II et al.): WASP-12b



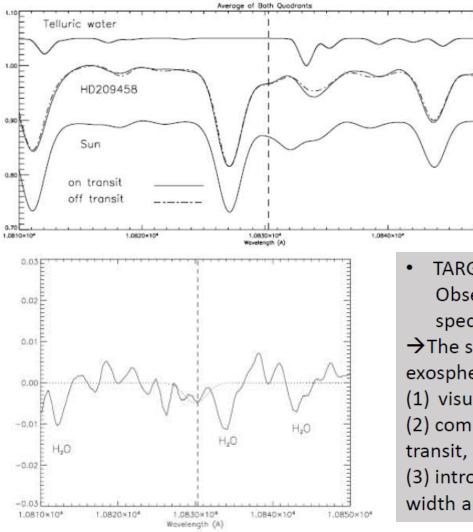
Fossati et al. 2010

Ly α: GJ 436b



Ehrenreich et al. 2015

Bourrier et al. 2016



Other Diagnostics

Cauley et al. 2018

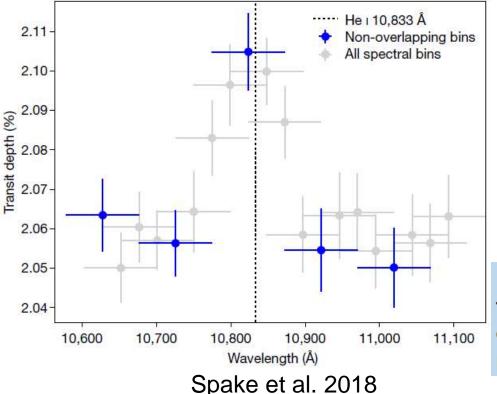
- Use of Ly α limited by geocoronal emission and ISM (see before)
- Ca II K, Na I, H α all produce contamination effects in active stars
- Absorption signatures from active regions can reach 0.3%
- On the contrary, He I is seen in <u>emission</u> so it dilutes absorption features rather enhancing them.

Moutou et al. 2003

He I: HD 209458b

TARGET: HD209458b Observations of a primary transit (15 June 2001) with the spectroscopic mode of ISAAC on the VLT (R=5800)
→The search for a HeI feature originating in the planet exosphere has been conducted with three methods.
(1) visual inspection
(2) comparison of the temporal behaviour at 10 830 Å in transit, with the same function out-of-transit
(3) introduction of a fake feature of a varying amplitude and width and 3σ-detection of this feature.

The detection of the HeI feature is not reported. The data set is strongly affected by instrumental limitations: -spectral resolution -fringing


ARIEL IT MEETING - INAF ROME, 02/10(2018

1.0850+104

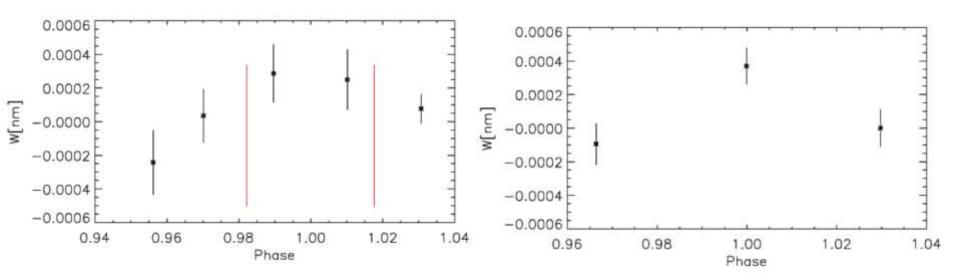
He I: WASP-107b

- TARGET: WAPS-107b
- Observations of a primary transit (31 May 2017) with Wide Field Camera 3 (WFC3), onboard the Hubble Space Telescope (HST).

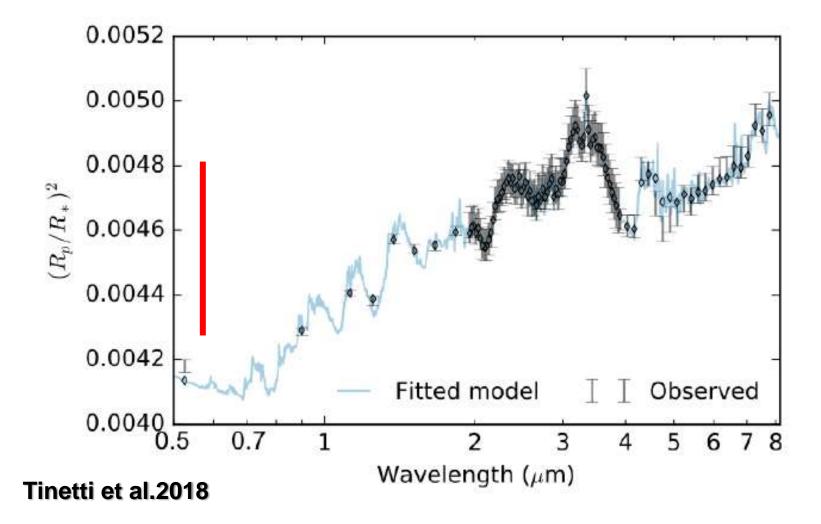
 \rightarrow From the obtained infrared transmission spectrum the narrow absorption feature of excited metastable helium at 10,833 angstroms has been identified with a transit depth (*Rp/Rs*)² of 2.105% ± 0.010%.

 various alternative explanations for the signal have been ruled out.

→WASP-107b is losing the 0.1–4 per cent of its total mass per billion years and may have a comet-like tail of gas shaped by radiation pressure.


WASP-107b is a heavily bloated sub-Saturn: M=0.12 Mjup, R=0.94 Rjup He I absorption is detected at 4.5 σ, with a feature of amplitude 0.049 ± 0.011 % over a 98 Angstrom bandpass

Atmospheric Escape: HRS


- Ongoing analysis of GIANO-B spectra of transiting planets collected within the context of the GAPS2 large programme at TNG
- Compute average pre-, during, and post-transit transmission spectra
- Determine absorption strength of He I @ 1.083 μ m via EW measurements
- Preliminary 3-σ detection in one of the targets (check for repeatability)

ARIEL IT MEETING - INAF ROME, 02/10(2018

A Test Case: HAT-P-11b

ARIEL could provide high SNR measurements of atmospheric escape, but...

Atmospheric Escape with ARIEL?

Wavelength	Required R & SNR			Scientific motivation		
range	Tier 1	Tier 2	Tier 3			
VISPhot 0.5 – 0.55 μm		Integrated ban 200 on the Ste 7 on the exopla	ellar SNR	 Correction stellar activity (optimised early stars) Measurement of planetary albedo Detection of Rayleigh scattering/clouds 		
FGS1 0.8 – 1.0 μm	Integrated band SNR ≥ 200 on the Stellar SNR SNR ≥ 7 on the exoplanet (goal)			 Correction stellar activity (optimised late stars) Measurement of planetary albedo Detection of clouds 		
FGS2 1.05 – 1.2 μm	Integrated band SNR ≥ 200 on the Stellar SNR SNR ≥ 7 on the exoplanet (goal)			 Correction stellar activity (optimised late stars) Detection of clouds 		
NIRSpec 1.25 – 1.95 μm	R: 10 averaged bands for 1.25 – 7.8 µm SNR ≥ 7	$R \ge 10$ SNR ≥ 7	$R \ge 10$ SNR ≥ 7	 Correction stellar activity (optimised late stars) Detection of clouds Detection of molecules (esp. TiO, VO, metal hydrides) Measurement of planet temperature (optimised hot) Retrieval of molecular abundances Retrieval of vertical and horizontal thermal structure Detection time variability (weather/cloud distribution) 		
AIRS (Channels 0 & 1) 1.95 – 7.8 μm		$\begin{array}{l} R \geq 50 \text{ for} \\ \lambda < 3.9 \mu m; \\ R \geq 15 \text{ for} \\ (\lambda > 3.9 \mu m) \\ \text{SNR} \geq 7 \end{array}$	$\begin{array}{l} R \geq 100 \mbox{ for} \\ (\lambda < 3.9 \mu m); \\ R \geq 30 \mbox{ for} \\ (\lambda > 3.9 \mu m) \\ \mbox{ SNR} \geq 7 \end{array}$	 Detection of atmospheric chemical components Measurement of planet temps. (optimised warm-hot) Retrieval of molecular abundances Retrieval of vertical and horizontal thermal structure Detection time variability (weather/cloud distribution) 		

1) Can the spectral range of NIRSpec be further adjusted? 2) Can a higher resolution mode (not 20-25, but closer to 100) be included?

Summary

- Systematic study of atmospheric escape an excellent opportunity for ARIEL
- He I line at 1.083 µm probes the uppermost atmospheric layers

-> a robust proxy for mass loss

- The line falls for free in ARIEL's spectral range
- Make an effort to adjust NIRSpec configuration
- A WG on upper atmospheres has just been setup. Good news, especially if it will deal with extended atmospheres too.
- We can contribute a) to the science case, b) data analysis expertise (coming the HRS side of the matter)