X-ray photochemistry of planetary atmospheres

Daniele Locci Magrathea collaboration (OAPa-OAPd): Eleonora Alei, Daniele Locci, Antonino Petralia, Cesare Cecchi-Pestellini, Angela Ciaravella, Riccardo Claudi, Giuseppina Micela

meeting ARIEL Roma, October 2018

Introduction

X-rays & Röntgen Spheres

Photochemestry of Toy Atmospheres

Conclusions & next steps

Introduction

X-rays & Röntgen Spheres

Photochemestry of Toy Atmospheres

Conclusions & next steps

Introduction

- **X**-rays & Röntgen Spheres
- Photochemestry of Toy Atmospheres

- Introduction
- **X**-rays & Röntgen Spheres
- Photochemestry of Toy Atmospheres
- Conclusions & next steps

Introduction

Chemistry

The abundance of elements in atmosphere is governed by chemistry, and depends on:

- Temperature
- Pressure

Disequilibrium processes

- Vertical mixing (eddy & molecular diffusion)
- Photochemistry

Mixing ratios as functions of the temperature at the chemical equilibrium. Moses+13

X-rays

Ionization rate: primary ionization

$$\varsigma'_X = \sum_k \int_{E_0}^{\infty} \frac{F_X(E)}{E} x_k \sigma_k(E) dE \qquad (1)$$

$$F_X(E,r) = \frac{\mathcal{L}_X(E)}{4\pi r^2} \times e^{-\tau(E,r)}$$

•
$$\tau(E,r) = n_{\rm H}\sigma(E)r$$

$$\mathcal{L}_X(E) = L_X \times \varphi(E)$$

Ionization rate: secondary ionization

$$\varsigma_X'' = \sum_{k=1}^3 \int_{E_0}^\infty F_X(E) \frac{x_k \sigma_k(E)}{W} dE$$

(2)

• W is the energy to make a ion pair

•
$$\varsigma_{\mathrm{X},i}^{\prime\prime} = (\sigma_i^{(e)} / \sigma_H^{(e)}) \varsigma_{\mathrm{X}}^{\prime\prime}$$

D. Locci

Röntgen sphere

The Röntgen sphere (*Lorenzani & Palla 01*) is defined as circumstellar regions in which the ionization rate due to X-rays exceeds the background level provided by cosmic rays, ζ_{cr} .

$$\varsigma_X(r\prime) = \varsigma_{\rm cr}$$

then $r \rightarrow R$ öntgen radius R_X

D. Locci

Röntgen sphere of pre-main sequence stars and solar proxies

Röntgen radii for solar proxies						
star^\dagger	age (Gyr)		$R_{\rm X}$ (pc)			
K0	0.002	1.9(-1)	4.1(-2)	5.6(-3)		
EK Dra	0.1	8.1(-2)	1.6(-2)	3.1(-3)		
π^1 UMa + χ^1 Ori	0.3	3.7(-2)	8.3(-3)	1.8(-3)		
κ^1 Cet	0.65	2.8(-2)	6.7(-3)	1.5(-3)		
β Com	1.6	1.3(-2)	4.2(-3)	9.2(-4)		
Sun	4.56	6.7(-3)	2.6(-3)	5.6(-4)		
β Hyi	6.7	4.2(-3)	1.9(-3)	4.2(-4)		
$\log_{10}(n_{\rm H}/{\rm cm}^{-3})$		2	4	6		

Orion Nebula Cluster

Locci+18

Photochemistry of Toy Atmospheres

Continuity equation

$$\frac{dn_i(z)}{dt} = P_i(z) - n_i(z)L_i(z) \quad (3)$$

- \blacksquare z: altitude
- \blacksquare n_i : number density
- L_i : loss rate coefficient
- P_i : production rate coefficient

An atmosphere of pure Oxygen

Chemical network

$$O + O_2 + M \longrightarrow O_3 + M$$
$$O + O_3 \longrightarrow O_2 + O_2$$
$$O_2 + h\nu \longrightarrow O + O$$
$$O_3 + h\nu \longrightarrow O + O_2$$

Photolysis rate

$$J_i(z) = \int \sigma_i(E) F(E, z) dE \qquad (4)$$

• $\sigma_i(E)$ photo-dissociation cross-section of *i*-th process

$$F(E,z) = F_0 e^{\tau(E,z)}$$

•
$$\tau = \sum_i \sigma_i(E) N_i(z)$$

An atmosphere of pure Oxygen

Initial set-up

- $n_l = 80$
- $\Delta z = 1 \text{ km}$

•
$$T(z) = 245 \text{ K}$$

$$n_g = 5.48 \cdot 10^{18} \text{ cm}^{-3}$$

• $[O_2]_m(z) = 1.$

The effects of X-rays on planetary atmospheres

X-ray ionization rate

$$\varsigma_{\mathbf{X},i}(z) = \varsigma'_{\mathbf{X},i}(z) + \varsigma''_{\mathbf{X},i}(z) \tag{5}$$

- We calculate molecular ionization cross-section as sum of those atomic
- We need to accurately calculate W (Cecchi-Pestellini+06)
- We can work into three configuration:
 - H, H₂, He
 - \blacksquare H₂O, O₂, N₂
 - $\blacksquare H_2O, CO_2, N_2$

X-rays inside toy atmospheres

		$R_{\rm X}$ (km)		
D	ensity	Solar	Heavy element	
_(c	$m^{-3})$	composition	rich	
10	9	1.6×10^{9}	3.2×10^{7}	
10	$)^{12}$	1.5×10^{7}	$2. \times 10^5$	

$$\begin{split} L_{\rm X} &= 1 \times 10^{30} \text{ erg/s} \\ \mathcal{Z} &= 1 \times 10^{-16} \text{ s}^{-1} \end{split}$$

Primary atmosphere

Composition & chemical network

For our toy atmosphere we have considered:

- 6 species: H, H₂, He, O, H₂O, OH (and their ions)
- 22 chemical reactions between bimolecular and recombination reactions
- 4 photo-dissociation reactions (UV)
- 6 photo-ionization reactions (XUV)

Initial conditon & set-up

- $n_l = 1.5 \cdot 10^3$
- $\Delta z = 10 \text{ km}$
- T(z) = 300 K

$$n_g = 5.48 \cdot 10^{20} \text{ cm}^{-3}$$

 $n_{TOA} = 6 \cdot 10^{-6} \text{ cm}^{-3}$

$$L_{\rm X} = 10^{30} \ {\rm erg \ s^{-1}}$$

$$\begin{array}{l} [\mathrm{H}]_m(z) = 9.7 \cdot 10^{-1} \\ [\mathrm{H}_2]_m(z) = 1 \cdot 10^{-2} \\ [\mathrm{He}]_m(z) = 1 \cdot 10^{-2} \\ [\mathrm{O}]_m(z) = 3.3 \cdot 10^{-3} \\ [\mathrm{H}_2\mathrm{O}]_m(z) = 3.3 \cdot 10^{-3} \\ [\mathrm{OH}]_m(z) = 3.3 \cdot 10^{-3} \end{array}$$

Primary atmosphere

IR induced spectra (The case of HD 189733b)

$$\begin{array}{l} {\rm n_{H_2}\,=\,10^6,\,10^8,\,10^{10}\,\,{\rm cm^{-3}}\rightarrow\langle\varsigma_H\rangle=7\cdot10^{-6},\,6.5\cdot10^{-6},\,3.7\cdot10^{-7}{\rm s^{-1}};}\\ L_{\rm X}\,=\,1.5\times10^{28}\,\,{\rm erg}\,\,{\rm s^{-1}};\,{\rm T}{=}1250,\,1550\,\,{\rm K} \end{array}$$

INAF-OAPa

IR induced spectra (The case of HD 189733b)

Conclusion & next steps

Conclusion

- X-rays affect the chemistry of upper layers of primordial atmospheres
- High levels of electronic concentration, for instance can enhance the hydrodynamic escape
- \blacksquare H₂ induced infrared emission spectra can be a diagnostic for the stellar high energy planet interaction

Next steps

- Include into continuity equation the vertical transport of particles
- Create a complete chemical network
- \blacksquare Include molecular excitation cross-section for electronic impact for the calculation of W
- Couple the chemical model with a 1D Radiative-Thermo-Convective model