

From disc chemistry to planetary atmospheres

DAVIDE FEDELE

ON BEHALF OF WG `PLANET FORMATION' @ INAF/ARCETRI

Reservoirs for planetary atmospheres 🕕 🚺

Outline

Introduction to protoplanetary discs

ALMA (initial) results on protoplanetary discs

Ariel `Planet formation' WG @ OAA

Conclusions

Planets 'demography'

Architecture of planetary systems is highly heterogeneous

Planet formation

Core-accretion

e.g., Mizuno 1980, Lissauer 1993, Pollack 1996

Gravitational instability

e.g., Adams 1989, Boss 1997, Durisen 2007

Pebble accretion

0.02

Observations of protoplanetary discs provide the initial conditions for planet formation

From atoms to life

Observations of protoplanetary discs to address chemical enrichment during planet formation

From atoms to life

Caselli & Ceccarelli 2012

Planetary composition: disc chemical reset vs inheritance scenario ?

Schematic of disc interior

Henning & Semenov 2013

Discs are characterized by large density (n = $10^4 - 10^{12}$ cm⁻³) and temperature (T = $10 - 10^4$ K) gradients

Discs are chemically active

Spatial distribution of volatiles

Oberg et al. 2011

The sequence of *icelines* induces radial stratification of C, N & O

Origin of planetary atmospheres

Schematic of core accretion

Atmosphere of giant planets reflects disc chemical composition
→ Where and how planets form

ALMA results

DISC SURFACE DENSITY

Disc surface density

Before ALMA: smooth surface density structure. Some disks with large cavity

ALMA discography

ALMA reveals the existence of gaps and rings & azimuthally asymmetric structure

Surface density with ALMA

Some discs are consistent with the presence of multiple (young) planets Planet formation must begin on short timescale (< 1 Myr)

March, 15 2018

ALMA results

DISK CHEMISTRY

Discs molecular inventory

Complex molecules in discs

Formic acid [Favre, Fedele et al. 2018]

10

15

 $\overline{20}$

Methanol [Walsh et al. 2016]

Methyl cyanide [Oberg et al. 2015]

60

40

-20

-40 -20

-15

-10

-5

0

v (km s⁻¹)

5

Flux (mJy) 20

Imaging the CO iceline

CO *iceline* measured in TW Hya using $CO-N_2H^+$ anti correlation

Non-Solar C/O in DM Tau

The ratio of CS/SO implies a C/O > 1

Radial gradient of C/O in TW Hya

The ring-like structure of $C_2H \& c-C_3H_2$ implies a C/O increasing with distance from star

WG Planet formation @ OAA

OAA Planet formation activities

- 1. Protoplanetary discs: multi-wavelength studies (IR, mm)
- 2. Astrochemistry: origin of complex molecules
- 3. Astrobiology lab

FAUST, ALMA LP on astrochemistry of low-mass protostars

PI: S. Yamamoto (Un. Tokyo), C. Ceccarelli, C. Chandler, C. Codella (Arcetri), N. Sakai

Assess chemical complexity during protostellar phase Origin of complex (pre-biotic) molecules: heritage or reset

FAUST, ALMA LP on astrochemistry of low-mass protostars

Targets L1527 IRAS 15398-3359 **CB68** 11551 IRS5 L483 Elias 29 **VLA 1623A** GSS30 (LFAM1) **RCrA IRS7B NGC1333 IRAS4C** BHB07-11 (B59) **IRS63 NGC1333 IRAS4A**

Envelope CS, c-C₃H₂

Centrifugal barrier **SO, SiO, CH₃OH**

Disc H₂CO, C¹⁸O, HC₃N

lonization H¹³CO⁺, DCO⁺, N₂H⁺

Complex CH₃OH, NH₂CHO, CH₃CHO, CH₃OCH₃, HCOOCH₃

Deutaration c-C₃HD, N₂D⁺, HDCO, D₂CO, CH₂DOH

Dust continuum

Astrobiology lab – J. Brucato

- Low temperature interactions of molecules with mineral surfaces
- UV irradiation of solid phase
- Photo-desorption and Thermal-desorption

Mass spectrometer

Mass range 1-300 amu

Cryostat

temperature range: 4-500 K

Spectrometer

range 0.5-50 microns

Astrobiology lab: example

Pure Formamide after UV irradiation fragmented into NH_2 , HCO and CH_2NO . These fragments are more volatile and desorbed HCO, NH_2 at 184 K and CH_2NO at 182 K, and Formamide at ~220 K.

Concluding remarks

ALMA studies of discs provide the initial conditions (physical structure and chemical composition) to origin of planets and atmospheres

ARIEL atmospheric composition of giant planets contain imprints of the original disc composition

Statistical comparison will help us to distinguish between *in situ* formation *vs* migration