ARIEL

A Chemical Census of a Large and Diverse Sample of Exoplanetary Systems

ARIEL fact-sheet

Name	λ (μm)	Spectral Resolution Reqt / Design
VisPhot	0.5 - 0.55	Photometer
FGS-1	0.8 - 1.0	Photometer
FGS-2	1.05 - 1.2	Photometer
NIRSpec	1.25 - 1.95	R≥10 / 20 - 25
AIRS- Ch0	1.95 - 3.9	R≥100 / 102 - 180
AIRS- Ch1	3.9 - 7.8	R≥30 / 30 - 64

- 1-m class Cassegrain telescope
- L2 orbit
- Photon noise dominated performance
- Ultra-stable spectrophotometry, better than 10–20 ppm
- Fast slew over large portion of skys: ~70deg/15min + 5min overhead

Payload optical diagram

Photometric and spectroscopic bands

Not included: detector quantum efficiency

Narrow FOV, light bucket instrument

- Silver coated
- Diffraction limited at $\lambda \ge 3 \ \mu m$ •

Payload and service module

AIRS CH0 – CH1

HgCdTe (MCT) detectors

Teledyne–IS

Euclid electronics and detector heritage AIRS-CH1 leverages US-NEOCam development, but ARIEL–customised

Enzo Pascale

ARIEL – INAF – ottobre 2018

Negligible systematics by design

Type of uncertainty	Source	Mitigation Strategy
Detector noise	Dark current noise	- Choice of low-noise detectors
	Readout noise	
	Gain stability	Calibration, post- processing data analysis, choice of stable detectors.
	Persistence	Post-processing decorrelation. Continuously staring at a target for the whole duration of the observation.
Thermal noise	Emission from telescope,	Negligible due to surface emissivity properties and
	common optics and all optical	in-flight temperatures of the payload.
	elements	
	Temperature fluctuations in time	Negligible impact by design
Astrophysical noise	Photon noise arising from the	Fundamental noise limit, choice of aperture size (M1
	target	diameter).
	Photon noise arising from local zodiacal light	Negligible over ARIEL band
	Stellar variability with time	Multi-wavelength stellar monitoring, post-
		processing decorrelation
Pointing jitter	RPE and PDE effects on the	Small RPE and PDE, Nyquist sampling, post-
	position, Spectral Energy	processing decorrelation
	Sistribution, and detector	
	intra/inter pixel response	
	Slit losses	Spectrometer input slit sufficiently large

Ultra-stable operational environment

Built to be photometrically stable

Achieved by using same material (aluminium) for telescope mirrors, supports, optical benches and channel instruments.

Negligible PSF variations during observations. Δ FWHM/FWHM << 0.1%

Pointing stability

- Can be problematic in presence of intra- and inter-pixel detector response variations
- Can however be made negligible applying good practice in instrument design
 - All focal planes shall be Nyquist sampled spatially
 - Flat field coefficient shall be know with sufficient precision (< 0.5%)
- Both are true in ARIEL

Don't apply to ARIEL

Enzo Pascale

ARIEL – INAF – ottobre 2018

Enzo Pascale

Input

ARIEI Data Reduction Pipeline

- Under definition in phase B1
- A working
 prototype exists
- Used to reduce
 ExoSim data

Mission Reference Sample and archetypes

- Thousand of targets to chose from
- Select a large, about 1,000, diverse exoplanets
- Mission is sized using archetypal targets for bright and faint sources
 - GJ1214 : a cold (T3000K) faint $(m_k = 8.8)$ M dwarf
 - HD219134: a bright ($m_k = 3.5$) k-star

Comparison with other instruments

Not only a question of error bar sizes Continuous coverage \rightarrow formidable spectroscopic mapper

Star activity: pulsation and granulation Negligible for ARIEL

Star activity: spots & faculae

- Cold spots shown in light blue.
- Hot faculae shown in brown.

Abundances

Closing thoughts

- ARIEL is designed to be the most efficient chemical mapper of a large and diverse population of known transiting exoplanets
- ARIEL performance is dominated by the astrophysical noise of the targets in the Mission Reference Sample
- Nothing prevents observing fainter targets in instrument noise dominated regime
- Performance modelling to support payload/ground segment development
- Performance modelling to support science development