ARIEL

Enabling planetary science across light-years

Giovanna Tinetti (UCL)

PLANETS ARE UBIQUITOUS.

OUR GALAXY IS MADE OF GAS, STARS & PLANETS

There are at least as many planets as stars

EXOPLANETS TODAY: HUGE DIVERSITY

3800+ PLANETS, 2700 PLANETARY SYSTEMS KNOWN IN OUR GALAXY

HUGE DIVERSITY: WHY?

FORMATION & EVOLUTION PROCESSES? MIGRATION? INTERACTION WITH STAR?

STAR & PLANET FORMATION/EVOLUTION

What we know: constraints from observations – Herschel, Alma, Solar System

Measured elements in Solar system

KEY EXOPLANET QUESTIONS

• How diverse are exoplanets chemically?

- Does chemical diversity correlate with other parameters?
 - How do planets form?
 - How do planets evolve?

THE SUN'S PLANETS ARE COLD

Some key O, C, N, S molecules are **not** in GAS form

WARM/HOT EXOPLANETS

O, C, N, S (TI, VO, SI) MOLECULES ARE IN GAS FORM

ISSUES WITH CURRENT DATA

- WE ARE DEALING WITH LOW SNR & R OBSERVATIONS
- DATA ARE SPARSE, NOT ENOUGH WAVELENGTH COVERAGE
- BROAD WAVELENGTH COVERAGE IS NOT SIMULTANEOUS
- Absolute Calibration at the level of 10-4 is not guaranteed!
- INSTRUMENT SYSTEMATICS ARE DIFFICULT TO DISENTANGLE FROM THE SIGNAL
- Stellar activity is the largest source of astrophysical noise
- WE NEED OBSERVATIONS ON A POPULATION OF OBJECTS TO DRAW CONCLUSIONS

INAF – Sept. 2018

ARIEL – ESA M4 mission

- 1-m telescope, spectroscopy from VIS to IR
- Satellite in orbit around L2
- ~1000 exoplanets observed (rocky + gaseous)
- Simultaneous coverage 0.5-7.8 micron
- Payload consortium: 16 ESA countries + NASA under study

A CHEMICAL SURVEY OF A LARGE POPULATION

SCIENCE REQUIREMENTS: EXOPLANET RADIATION, MOLECULAR & CLOUD SIGNATURES, STAR ACTIVITY

A CHEMICAL SURVEY OF A LARGE POPULATION

SCIENCE REQUIREMENTS: EXOPLANET RADIATION, MOLECULAR & CLOUD SIGNATURES, STAR ACTIVITY

Aiming at 10 ppm stellar flux at multiple wavelengths

Through stable instrument, external calibration & proven postprocessing analysis

15

COLOUR-MAGNITUDE DIAGRAMS, PRELIMINARY CLOUD-CHARACTERISATION

 Colour-colour diagrams and colour-magnitude diagrams in the IR and VIS will allow to identify families of planets

Triaud 2015; Mollière et al., 2016

(NON)-EQUILIBRIUM CHEMISTRY? ATMOSPHERIC CIRCULATION? CLOUD PATTERN?

CORRELATION WITH ANY OTHER KEY PARAMETERS?

ARIEL WILL CLARIFY CORRELATION WITH THE DENSITY

18

ERRESTRIAL-SUBNEPTUNES TRANSITION

ARE SUPER-EARTHS BIG TERRESTRIAL PLANETS, SMALL NEPTUNES? IS H/HE STILL THERE?

Formation scenarios for small planets

ARIEL observations for small planets

Figure by M. Rocchetto,

IS ELEMENTAL COMPOSITION CORRELATED ...

... TO EXOPLANET PROVENANCE OR STELLAR METALLICITY?

ARIEL retrieval WG., Turrini et al., 2018

LARGE POPULATION OF WARM/HOT PLANETS

DIVERSITY PROBED IN ARIEL CORE SAMPLE

PLANET SIZE, DENSITY, TEMPERATURE, STAR TYPE, METALLICITY

DIVERSITY PROBED IN ARIEL CORE SAMPLE

PLANET SIZE, DENSITY, TEMPERATURE, STAR TYPE, METALLICITY

DIVERSITY PROBED IN ARIEL CORE SAMPLE

PLANET SIZE, TEMPERATURE, STAR TYPE, METALLICITY

SYNERGIES/COMPLEMENTARITIES WITH JWST

JWST CANNOT OBSERVE 1000 PLANETS

ARIEL OPTIMAL DESIGN & PERFORMANCES

SYNERGIES/COMPLEMENTARITIES WITH ELT HIGHLY COMPLEMENTARY TO LARGE, GROUND-BASED FACILITIES **E-ELT** Simulations 0.0218 0.0008 Fitted model 0.0006 Observed Signal 0.0216 0.0004 0.0002 0.0214 0.0000 -0.0002 2.29 2.30 2.32 2.31 Wavelength (μm) 0.0212 ARIEL spectra give the continuum 0.0210 at broad wavelength range 0.5 0.7 8 3 Wavelength (µm) INAF – Sept.2018

PHASE B HAS STARTED...

150 SCIENTISTS ALREADY AT WORK!

CONCLUSIONS

- Exoplanets appear to be ubiquitous in our Galaxy
- Current sample of discovered exoplanets is very diverse in terms of basic planetary/orbital parameters.
- Molecular & elemental composition can help to understand the nature and history of exoplanets
- Hubble, Spitzer, ground-based instruments have delivered pioneering observations of exoplanet atmospheres
- We need more accurate observations over a broader wavelength range (JWST) for a statistically large sample of planets (ARIEL) to understand the chemical diversity.
- ARIEL has been conceived to deliver the first chemical survey of ~ 1000 exoplanets, probing
 uniformly the gamut of planet and stellar parameters

Join the ARIEL team!

