
5 Mar 2015Marco Frailis 1/39Introduction to C++

Introduction to C++
Day 2

Marco Frailis
INAF – Osservatorio Astronomico di Trieste

Contributions from:
Stefano Sartor (INAF)

5 Mar 2015Marco Frailis 2/39Introduction to C++

Memory layout of a C/C++ program

Text segment: machine instructions

Initialized data segment: statically
allocated global variables explicitly
initialized

bss area: statically allocated or global
variables initialized by default to zero

Heap memory: where dynamic memory
allocation takes place

Stack memory: non-static local
variables and the information for each
function call

text

initialized data

uninitialized data
(bss)

low address

high address

read from
program file

heap

command line
arguments, environment
variablesstack

rgcd(123,15)
rgcd(15,3)

function arguments
return address
local variables

Function call stack
frame

// recursive greatest common divisor
int rgcd(int v1, int v2)
{
 if (v2 != 0)
 return rgcd(v2, v1 % v2);
 return v1;
}

5 Mar 2015Marco Frailis 3/39Introduction to C++

Function overloading
void pretty_print(ostream& os, const vector<double>& v)
{
 os << "[";
 for (decltype(v.size()) i = 0; i < v.size(); ++i) {
 if (i != 0)
 os << ", ";
 os << v[i];
 }
 os << "]" << endl;
}

void pretty_print(ostream& os, const vector<double>& v, int prec)
{
 ...
}

void pretty_print(ostream& os, vector<double>& v)
{
 // same body as first function
}

void pretty_print(ostream& os, vector<int>& v)
{
 ...
}

Two functions that appear in the same scope are overloaded if they have the same
name but have different parameter lists (different number of parameters or different
parameter types)

decltype tells you
the name’s or the
expression’s type
of the argument

5 Mar 2015Marco Frailis 4/39Introduction to C++

Calling overloaded functions

The compiler matches a call to a function automatically with the
functions available in the overloaded set

The overloading can also distinguish between an reference parameter
and a const reference parameter

But in the previous example, the function
void pretty_print(ostream& os, vector<double>& v)

is redundant

In case a call is ambiguous (more than one match available), the
programmer should cast one or more arguments to resolve the
ambiguity

const vector<double> a{4.5, 7.7};
vector<double> b{5.6, 7.6, 1.23};
vector<int> c{1,2,3,4,5};

pretty_print(cout, a);
pretty_print(cout, a, 10);
pretty_print(cout, b);
pretty_print(cout, c);

5 Mar 2015Marco Frailis 5/39Introduction to C++

Function declaration

A function must be declared before it is used
the compiler verifies the correspondence of arguments, so that it can give
back error or warning messages if needed

We can declare a function separately from its definition. Functions
should be declared in header files and defined in source files

A function declaration consists of a return type, the function name and
the parameter list. The function body is replaced by a semicolon.
These three elements form the function prototype

In a function declaration, we can eliminate the names of the
parameters and just keep the types

Let's suppose that we have defined a function calculating the median
of a vector in a source file named stats.cpp. The corresponding header
file, that we call stats.h, can be the following

5 Mar 2015Marco Frailis 6/39Introduction to C++

Header file

User defined header files generally can have the extension “.h” or
“.hpp” or “.hxx”

In a header file, using directives should be avoided

Header files can include other header files. To avoid multiple inclusion
of the same header we should use the so called “header guards”

After the first inclusion, the name GUARD_STATS_H is defined and hence
a second inclusion will not pass the #ifndef preprocessor condition

#ifndef GUARD_STATS_H
#define GUARD_STATS_H

#include <vector>

// Function returning the median of the input vector
double median(std::vector<double>);

// Function returning the mean of the input vector
double mean(std::vector<double>&);

#endif // end of GUARD_STATS_H

5 Mar 2015Marco Frailis 7/39Introduction to C++

Header file inclusion

The source file that defines a function should include the header file
where the function is declared

Any other source file that uses that function should include such
header

User defined headers are searched by the compiler starting from the
directory in which the source file including it is located

#include "stats.h"
#include <iostream>
using namespace std;

int main()
{
 vector<double> v{1,2,3,4,5,6,7,8,9,10};

 cout << "v median: " << median(v) << endl;

 return 0;
}

5 Mar 2015Marco Frailis 8/39Introduction to C++

Functions and default parameters

For one or more function parameters, we can also specify a default
value

Default values should be provided in the function declaration and only
to consecutive parameters starting from the last one

A function that provides a default parameter can be invoked with or
without an argument for that parameter

// Reads lines from a Comma-separated Value file
std::vector<std::vector<std::string>>
readCSVLines(std::istream&, char fieldSep = ',',
 char lineSep = '\n');

#include "utils.h"
#include <fstream>
using namespace std;

int main()
{
 ifstream infile("data.csv");
 auto lines = readCSVLines(infile); // default field and line separator
 infile.clear(); // clear fail and eof bits
 infile.seekg(0, ios::beg); // back to the start
 lines = readCSVLines(infile, ' '); // use space as field sep
}

5 Mar 2015Marco Frailis 9/39Introduction to C++

Inline functions

Calling a function is slower than evaluating the equivalent expression

We can optionally qualify a (small) function definition as inline, asking
the compiler to expand calls to the function “inline” when appropriate

The compiler needs to be able to see the function definition: inline
functions are usually defined in header files

In general, inline should be used to optimize small (with few lines)
functions that are called frequently

inline void swap(int& v1, int& v2)
{
 int tmp = v2;
 v2 = v1;
 v1 = tmp:
}

5 Mar 2015Marco Frailis 10/39Introduction to C++

Compiling and linking multiple source files

C++ supports the notion of separate compilation, which allows us to store
our program into separate source files and compile each of these files
independently

The source files are compiled separately and then linked together (a two
stage process):
1. A source file is compiled without creating an executable. The result is an

object file, with '.o' suffix
2. The object files are merged together by a separate program called linker. The

result is an executable

The first two commands create the object files. The last command calls
the linker (an external program, such as ld) and generates the executable

$ g++ -Wall -std=c++11 -c stats.cpp # generates stats.o
$ g++ -Wall -std=c++11 -c test_stats.cpp # generates test_stats.o
$ g++ test_stats.o stats.o -o test_stats

5 Mar 2015Marco Frailis 11/39Introduction to C++

Exceptions

In the first lecture, slide 43, we have used a C++ language feature, called
exceptions, to signal an error during program execution:

When a program throws an exception, the execution passes to another
part of the program, along with an exception object

An exception object contains
information that the caller
can use to act on the
exception

double mean(const vector<double>& samples)
{
 ...
 if (size == 0)
 throw domain_error("mean of an empty vector");
 ...
}

logic_error runtime_error

domain_error range_error

invalid_argument overflow_error

length_error underflow_error

out_of_range

<stdexcept>

5 Mar 2015Marco Frailis 12/39Introduction to C++

Exception handling

When a group of statements can throw exceptions, we can include that
group of statements in a try statement

The try statement tries to execute the block following the try keyword. If a
domain_error occurs, it stops the execution of the block and executes the
block in the catch clause

In this example, the what member function provided by the standard
exceptions returns the string used in the initialization of the exception
object

Multiple catch clauses can follow a try statement, each one checking a
different type of exception

double mean = 0, median = 0;
try {
 mean = mean(samples);
 median = median(samples);
 cout << "sample statistics: mean=" << mean
 << " median=" << median << endl;
} catch (domain_error& e) {
 cerr << e.what() << endl;
}

5 Mar 2015Marco Frailis 13/39Introduction to C++

Defining a template function 1/2

To show some template function concepts, let’s define a function that
calculates the maximum value of a vector, for any element type T that
provides the < operator

the template header, template <class T>, tells the compiler that we
are defining a template function that will take a single type parameter T

template <class T>
T max(const std::vector<T>& v)
{
 auto size = v.size();
 if (size == 0)
 throw std::domain_error("Error: max of an empty vector");

 T max_value = v[0];
 for (decltype(size) i = 1; i != size; ++i)
 if (max_value < v[i])
 max_value = v[i];

 return max_value;
}

5 Mar 2015Marco Frailis 14/39Introduction to C++

Defining a template function 2/2

Type parameters define names that can be used within the scope of
the function. But they refer to type names, not to variables

In the example, the parameter type T is used to specify the type of the
vector elements, and the return type of the function. We also declare
the local variable max_value of type T

When we call max, passing as argument a vector<double>, the
compiler will effectively create and compile an instance of the function
that replaces every occurrence of T with double

Calling the template function:

vector<double>
v{3,5,2,9,4,1}:

double max_value = max(v); double max_value = max<double>(v);

No need to specify the template
parameter for function templates

5 Mar 2015Marco Frailis 15/39Introduction to C++

Template compilation

Template functions are different from ordinary functions. The compiler
must have access to the source code that defines the template
function when it finds a call to that function

All compilers support the so called “inclusion model”, according to
which the template function is declared in a header file, but the header
file then includes the source file where the function is defined

For instance, suppose that the max template function is declared in the
tstats.h header and defined in the tstats.cpp source file, then:

#ifndef GUARD_TSTATS_H
#define GUARD_TSTATS_H

#include <vector>

template <class T> T max(const std::vector<T>&);

#include "tstats.cpp"

#endif // end of GUARD_TSTATS_H

#ifndef GUARD_TSTATS_CPP
#define GUARD_TSTATS_CPP

#include "tstats.h"
#include <stdexcept>

template <class T>
T max(const std::vector<T>& v)
{
 // definition as before
}

#endif // end of GUARD_TSTATS_CPP

tstats.h

tstats.cpp

5 Mar 2015Marco Frailis 16/39Introduction to C++

Additional containers: std::list 1/2

std::list is a template data structure which allows to efficiently add or
delete elements from the middle of the container.

An std::list is implemented as a doubly linked list. The elements are not
contiguous in memory

#include <iostream>
#include <algorithm> // std::lower_bound
#include <list>

inline bool is_even(int i){
 return !(i%2);
}

using namespace std;
int main(){
 list<int> l1{1,2,3,4,5,14,15};
 list<int> l2{10,12,13};

 // find the first element in l1 which is not less than 10
 auto low = lower_bound(l1.begin(),l1.end(),10);

 // insert the list l2 in l1 starting from low index
 l1.splice(low,l2);

5 Mar 2015Marco Frailis 17/39Introduction to C++

Additional containers: std::list 2/2

std::list does not provide random access to its elements. Missing
member functions: subscripting [], capacity() and reserve().

 // remove even elements using the function previously defined
 l1.remove_if(is_even);

 for(auto e : l1)
 cout << e << " ";
 cout << std::endl;

 return 0;
}

5 Mar 2015Marco Frailis 18/39Introduction to C++

Associative containers: std::map 1/2

map is an associative data structure that stores (key, value) pairs and
lets us insert and retrieve elements quickly based on their keys

Each element in a map is really a std::pair. A pair is a simple data
structure that holds two elements, which are named first and second
#include <map>
#include <iostream>

using namespace std;

int main()
{
 // Constructing a map from an initializer list
 map<string, string> m1 = {{"TELESCOP", "PLANCK"},
 {"INSTRUME", "LFI"},
 {"APID", "1538"}};

 m1["TYPE"] = "3"; // adding a new key-value pair {"TYPE","3}

 // A pair is the really the type of each element in the map
 pair<string,string> p{"SUBTYPE","25"};
 // Attributes of a pair type
 cout << "pair elements: " << p.first << " " << p.second << endl;

5 Mar 2015Marco Frailis 19/39Introduction to C++

Associative containers: std::map 2/2

map is usually implemented as a balanced binary search tree

So, elements are automatically kept sorted based on the key values
Time to access an element: logarithmic in the total number of elements of the
container

Alternative: unordered_map, implemented with hash tables

 // Alternative isertion methods
 m1.insert(p);
 m1.insert({"PI1_VAL","102"});
 m1.emplace("PI2_VAL", "0");

 cout << "m1 elements: [";
 for (const auto& x : m1)
 cout << "(" << x.first << "," << x.second << ") ";
 cout << "]" << endl;

 // Searching a key within the map m1
 auto it = m1.find("APID");
 if (it != m1.end())
 cout << "key \"APID\" found: "
 << "(" << it->first << "," << it->second << ")"
 << endl;
}

8

3 10

1 6 14

4 7 13

5 Mar 2015Marco Frailis 20/39Introduction to C++

Built-in array

An array is a kind of container that is part of the core language

An array contains a sequence of one or more objects of the same type

It has no function members.

According to the C++ standard, the number of elements in the array
must be known at compile time and cannot change dynamically

// defining an array of doubles: 1024 elements
double buffer[1024];

// the size of the array can be specified using const variables
const auto BSIZE = 1024;
double buffer2[BSIZE];

// size deduced from the initialization list length
double filter[] = {0.020, 0.230, 0.498, 0.230, 0.020};

// set all elements to 0.0
for(auto i=0; i<BSIZE; i++)
 buffer2[i] = 0;

5 Mar 2015Marco Frailis 21/39Introduction to C++

Array of char

A string literal is an array of const char with an extra character (the null
character, ’\0’):

has the same meaning as the string literal “Hello”. In general, C style
strings are defined as:

In the above example, the null character is added automatically by the
compiler. This character is used by the function strlen, defined in the
cstring header, to calculate the length of the string

const char hello[] = {'H', 'e', 'l', 'l', 'o', '\0'};

// two examples of C-style strings
char* msg1 = "Please, insert your name:";
char msg2[] = "Parameter 1:";

size_t len = strlen(msg1);

5 Mar 2015Marco Frailis 22/39Introduction to C++

std::array
Provided by the C++11 standard as an alternative to built-in arrays

It is a fixed-size sequence of elements where the number of elements is
specified at compile time
But it provides a subset of methods used by other std containers:
array::begin(), array::end(), array::size(), array::data(), etc.

#include <iostream>
#include <array>
using namespace std;

int main()
{
 array<int, 5> a = {0,5,2,6,9};

 // key is a value to search in the unsorted a
 int key = 6;
 bool found = false;

 size_t i = 0;
 while (i < a.size() and !found) {
 if (a[i] == key)
 found = true;
 ++i;
 }

 // ... print result
}

Non-type template parameter

Only constant integral values

5 Mar 2015Marco Frailis 23/39Introduction to C++

Iterators and standard algorithms

An Iterator is an object which allows to iterate (hence its name) through
the elements of a container, providing at least two operations:

(++) increment operator. Move the iterator to the next element.
(*) dereference operator. Access the current element.

According to the peculiarities of the container, different Iterator
categories, which provide different operations, exist:

Input iterator: Sequential access in one direction, read only
Output iterator: Sequential access in one direction, write only
Forward iterator: Sequential access in one direction, read and write
Bidirectional iterator: Sequential access in both directions, read and write
Random-access iterator: Efficient access to any element, read and write

5 Mar 2015Marco Frailis 24/39Introduction to C++

Iterators and standard algorithms

std containers provide member functions begin(), returning an iterator
to the first element, and end(), returning an iterator to the last plus one
element.

The standard library provides a few algorithms and utils which accept
iterators as arguments (regardless the container type).

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;
int main(){
 vector<int> v(8); // v is initialized with 8 zeroes
 int a[] = {2,5,7,1,0,45,30,3};

 /* copies first 4 elements from a to v and returns
 * the iterator to the next element in v
 */
 vector<int>::iterator it = copy(a, a+4, v.begin());

 /* fills with -5 starting from it until the last
 * element of v
 */
 fill(it, v.end(),-5);
}

Input Iterators

Output Iterators

Output Iterators

5 Mar 2015Marco Frailis 25/39Introduction to C++

Computational complexity in the standard library

Big-O notation expresses the running time of an algorithm as a
function of a given input of size n

O(log

n)

O(n)

O(n log

n)

O(n2)

Number of elements

O(n3)O(2n)

Ru
nn

in
g

tim
e

5 Mar 2015Marco Frailis 26/39Introduction to C++

Sorting

sort: sorts the elements using operator < by default (relative order of
equal elements may not be preserved). O(N·log(N))

nth_element: rearranges the elements in such a way that the element
at the nth position is the element that would be in that position in a
sorted sequence. None of the elements preceding nth are greater than
it, and none of the elements following it are less. O(N)
#include <vector>
#include <algorithm>
using namespace std;
int main(){
 int a[] = {11, 45, 6, 7, 8, 10, 9, 2};
 vector<int> v = {11, 45, 6, 7, 8, 10, 9, 2};

 // sort the elements of v
 sort(v.begin(),v.end());

 // set the 4th element in the position as array a was sorted
 nth_element(a,a+3,a+8);
 /*
 v == 2 6 7 8 9 10 11 45
 a == 6 2 7 8 11 10 9 45
 */
}

5 Mar 2015Marco Frailis 27/39Introduction to C++

Lower bound and find

lower_bound: returns, in an ordered container, an iterator to the first
element equal or grater then the compared one. O(log(N))

find: returns an iterator to the first element equal to the compared one
if present; returns the end iterator otherwise. O(N)
#include <algorithm>
#include <vector>

using namespace std;
int main(){
 vector<int> v = {1,5,6,8,11,20};
 vector<int>::iterator lb, fi;

 // find the first element equal to or grater then 7
 lb = lower_bound(v.begin(),v.end(),7);

 // find the first element equal to 7
 fi = find(v.begin(),v.end(),7);

 /*
 *lb == 8
 fi == v.end()
 */
}

5 Mar 2015Marco Frailis 28/39Introduction to C++

Sort: comparison operation

sort, nth_element and lower_bound, accept a callable object as final
optional argument to specify a different order relation that guides the
behavior of the comparison operation (by default the usual <)
#include <vector>
#include <algorithm>
#include <iostream>

// function to sort elements in descending order
bool gt (int x, int y) { return x > y;}

using namespace std;
int main(){
 vector<int> v = {11, 45, 6, 7, 8, 12, 9, 2};
 int a[] = {11, 45, 6, 7, 8, 12, 9, 2};

 sort(v.begin(),v.end(),gt);

 auto it = lower_bound(v.begin(),v.end(),10,gt);

 nth_element(a,a+3,a+8,gt);

 /*
 v == 45 12 11 9 8 7 6 2
 a == 11 45 12 9 8 7 6 2
 *it == 9
 */
}

5 Mar 2015Marco Frailis 29/39Introduction to C++

Lambda expressions 1/2

capture list

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;
int main(){
 vector<int> v = {0,1,7,5,6,3,5,2,3,4};

 int val = 5;

 // lambda expressions can be stored in variables
 auto lambda = [val] (int x) -> bool { return x == val;};

 // count how many elements are equal to val
 int found = count_if(v.begin(),v.end(),lambda);

 cout << "found " << found << " elements equal to " << val << endl;

 // print the elements using a lambda expression
 for_each(v.begin(),v.end(),[](int x){cout << x << " ";});

 cout << endl;
 return 0;
}

parameter list

return type

body

5 Mar 2015Marco Frailis 30/39Introduction to C++

Lambda expressions 2/2

Lambda expressions are anonymous functions, mostly used to
improve code readability when passing functions as arguments

[] capture list: possibly empty list of names defined in outer scope used by
the expression
() optional parameter list: specify the arguments the lambda expression
requires
-> type : (optional) specify the return type
{} body : body of the lambda expression, specifying the code to be
executed

5 Mar 2015Marco Frailis 31/39Introduction to C++

Classes: struct definition

The struct keyword lets us define a new data type as an aggregate of
different attributes (a record)

In the following example, we define two types:
A Point type, to store spherical coordinates (RA, DEC)
A Galaxy type, to store galaxy properties

struct Point {
 double ra;
 double dec;
};

struct Galaxy {

 // ID of galaxy instance
 unsigned long id;
 // Galaxy coordinates (RA, DEC)
 Point coord;
 // Redshif of Galaxy instance
 double z;
 // Velocity of Galaxy instance
 double v;
};

5 Mar 2015Marco Frailis 32/39Introduction to C++

Struct members

Initializing and accessing a struct attributes

In C++, a struct is in fact a class where by default all members are public,
i.e. directly accessible with the dot operator

int main()
{
 Galaxy g1{1, {349.18372, -0.070794291}, 0.527313,
 1/(1 + 0.527313)};

 Galaxy g2; // default initialized galaxy instance
 // in this case all elements initialized to zero

 g2.id = 2;
 g2.coord.ra = 348.3452;
 g2.coord.dec = 0.0653423;
 g2.z = 0.5135289;
 g2.v = 1/(1+g2.z);

 double ra = g1.coord.ra;
 double dec = g1.coord.dec;

 cout << "galaxy g1 RA-DEC: (" << ra << ", " << dec << ")" << endl;

 std::vector<Galaxy> galaxy_cluster;
 galaxy_cluster.push_back(g1);
 galaxy_cluster.push_back(g2);
}

5 Mar 2015Marco Frailis 33/39Introduction to C++

Pointers 1/2

In the previous example, a galaxy instance requires 40 bytes of
memory

If we need to read in memory millions of galaxy instances and sort
them by their coordinates, this would require millions of expensive
copy operations when swapping elements in a
std::vector<Galaxy>

We need a lighter type to support such operations, since we cannot
create a vector of references.

A pointer is a value that represents the memory address of an object

5 Mar 2015Marco Frailis 34/39Introduction to C++

Pointer 2/2

If x is an object , than &x is the address of that object
The & in &x is the address operator, distinct from the & used to define reference
types

If p is the address of an object, then *p is the object itself
The * is the dereference operator, analogous to the one applied to iterators
We say that p is a pointer that points to x
If v is a member of the object pointed by p, then we access v from p with two
alternative notations:
p->v or (*p).v

The address of an object of type T has type “pointer to T”, written as T*

p x

5 Mar 2015Marco Frailis 35/39Introduction to C++

Using pointers

Pointer definition

or

or

Pointers should be initialized to nullptr

Pointer usage:

int *p, q; // p is a pointer to int, q is an int variable

int* p, q; // equivalent but misleading (q is not a pointer)

int* p;
int q;

double* p = nullptr;

double x = 0.5;
cout << "x = " << x << endl;

// dp points to x
double* dp = &x ;
// change the value of x through dp
*dp += 0.5;
cout << "x = " << x << endl ;

// xref is a reference to x
double& xref = *dp;
xref += 0.5;
cout << "x = " << x << endl;

5 Mar 2015Marco Frailis 36/39Introduction to C++

Pointer arithmetic

Built-in arrays and pointers are strictly related: when we use the name
of an array as a value, that name represents a pointer to the initial
element of the array

A pointer is a kind of random-access iterator: if p points to the mth
element of an array, then (p + n) points to the (m + n)th element of the
array and (p - n) points to the (m − n)th element (if they exists)

If p and q are pointer to elements of the same array, the integer
number of elements between them is given by (p – q) (it might be
negative)

double buffer[1024];
*buffer = 1; // the first element of buffer is now set to 1.0

5 Mar 2015Marco Frailis 37/39Introduction to C++

Dynamic memory allocation and deallocation

If T is a type, it is possible to allocate at run-time an object of type T using
the new operator. The result is a pointer to the allocated object

To allocate a single object, the new operator can be used in three forms:

new T new T(args) new T{args}

With the first form, the object is default-initialized; the second and third
forms let us provide the arguments to initialize the object

When we have finished using a dynamically allocated object, we must
delete it, using the delete operator

After applying delete, the memory occupied by *pval1 and *pval2 is freed
and the pointers become invalid

double *pval1 = new double; // uninitialized value
double *pval2 = new double(1.0);

delete pval1;
delete pval2;

pval1 = nullptr;
pval2 = nullptr;

5 Mar 2015Marco Frailis 38/39Introduction to C++

Array allocation and deallocation

There is another form of the new operator that can be used to allocate,
at run-time, an entire array of objects:

It creates an array of n objects of type T and returns a pointer to the first
element of the array. Each element is default-initialized

As an example, suppose that a file contains a sequence of floating-point
values and that this sequence is preceded by an integer specifying the
number of values:

To later free the memory allocated, we must use the delete[]
operator:

std::size_t n;
ifile >> n; // first reading the total number of values
// Allocating the necessary memory buffer
double* samples = new double[n];

new T[n]

delete[] samples;

5 Mar 2015Marco Frailis 39/39Introduction to C++

Sorting with a vector of pointers

int main()
{
 // filling a vector of galaxy pointers with dynamically allocated instances
 vector<Galaxy*> vg;
 vg.push_back(new Galaxy{1, {349.18372, -0.070794291}, 0.527313});
 vg.push_back(new Galaxy{2, {348.3452, 0.0653423}, 0.5135289});
 vg.push_back(new Galaxy{3, {346.29340, 0.034823}, 0.5126848});

 // lambda expression to sort galaxy pointers by RA
 auto sort_by_ra = [] (const Galaxy* x, const Galaxy* y)
 {return x->coord.ra < y->coord.ra;};

 sort(vg.begin(), vg.end(), sort_by_ra);

 cout << "galaxies ordering by RA: ";
 for (const auto x : vg)
 cout << x->id << " ";
 cout << endl;

 // deleting all the dynamically allocated galaxies within the vector
 for (auto x : vg) {
 delete x;
 x = nullptr;
 }

 return 0;
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

