
26 Feb 2015Marco Frailis 1/45Introduction to C++

Introduction to C++
Day 1

Marco Frailis
INAF – Osservatorio Astronomico di Trieste

26 Feb 2015Marco Frailis 2/45Introduction to C++

The C++ language 1/2

C++ is designed to be a statically typed, general purpose language, to
be as compatible with the C language as possible

It is designed to support multiple programming styles:
Procedural programming
Data abstraction
Object-oriented programming (OOP)
Generic programming (with templates)
Functional programming (to some extent, e.g. lambda functions)

C++ is a compiled language
Source text files processed by a compiler producing object files
Object files combined by a linker yielding an executable program
The executable program is created for a specific hardware/system
combination

26 Feb 2015Marco Frailis 3/45Introduction to C++

The C++ language 2/2

It provides a standard library, extending the core language,
including:

Input/output classes
Data structures: dynamic arrays, linked lists, binary
trees, hash tables
Several algorithms: searching, sorting, counting,
manipulating

Memory management
Low level: pointers and raw arrays, allocation,
deallocation
Higher level: allocation and smart pointers

26 Feb 2015Marco Frailis 4/45Introduction to C++

Object-oriented programming

An object packages both data and procedures that operate on the data

Such procedures are called member functions or methods or
operations

The implementation of an object is specified in its class, which defines
the internal data (or attributes) of the object and the operations that
the object can perform

New classes can be defined as subclasses of a parent class,
inheriting its attributes and operations

An abstract class is one whose main purpose is to define a common
interface for its subclasses

When inheriting from an abstract class, we speak about polimorphism,
since the same interface is associated to different implementations
through its subclasses.

26 Feb 2015Marco Frailis 5/45Introduction to C++

Generic programming

Generic programming parameterizes algorithms so that they work for a
variety of types and data structures

For instance, data structures holding a collection of elements of some
kind, such as vectors, lists, queues, associative containers, are
general concepts and should be independent of the type of elements

Also, algorithms to sort, copy or search a sequence of elements
should be independent of the particular type of the elements or type of
the container

They can be defined as templates, parameterized by the types to
which type are applied

In C++, templates are a compile time mechanism, avoiding any run-
time overhead

26 Feb 2015Marco Frailis 6/45Introduction to C++

C++ standard evolution 1/2

First ISO standard in 1998 (C++98)

New revision of the standard in 2003 (C++03)
No new language features, just a bug fix release for
compiler writers

C++ Technical Report 1 (TR1) in 2005
A document proposing additions to the standard library

26 Feb 2015Marco Frailis 7/45Introduction to C++

C++ standard evolution 2/2

New C++ ISO standard in 2011 (C++11)
Additions to the core language, including:

Deducing the type of an object from its initializer (auto)
Lambda expressions
Move semantics
The range-for statement
Type aliases

Additions to the standard library, including
Hashed containers
Basic concurrency library (threads)
Regular expression library
tuple library
Unique and shared pointers

Last C++ standard revision in 2014 (C++14)
Minor revision with small improvements, e.g. function return type deduction

26 Feb 2015Marco Frailis 8/45Introduction to C++

C++ compilers (with C++11 conformance)

GCC (GNU Compiler Collection), version 4.8 or greater
Linux, Mac OS X, Windows (with MinGW or Cygwin), iOS, Android
ISO support status:
https://gcc.gnu.org/onlinedocs/libstdc+/manual/status.html#status.iso.2014

 Clang, version 3.3 or greater
Linux, Mac OS X, Windows (with MinGW or Cygwin), iOS, Android

Intel(R) C++ Compiler (commercial), version 13.0 or greater
Linux, Mac OS X, Windows, Android

Microsoft Visual C++, version in Visual Studio 2013 or greater
Free version (with license limitations): Visual Studio Community 2013
Windows, Android, iOS

https://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html#status.iso.2014

26 Feb 2015Marco Frailis 9/45Introduction to C++

C++ in Astronomy
Planck

Most of the processing pipelines developed in C++ (e.g. telemetry processing,
calibration)

LSST
Core processing developed in C++

ALMA
ACS software: C++ implementation for the control system

MAGIC telescopes
MARS, the analysis and reconstruction software is based on ROOT and written in C++

Euclid
C++ and Python selected for developing all the processing levels

FITS standard
cfitsio (C)
CCfits (C++)

26 Feb 2015Marco Frailis 10/45Introduction to C++

References
On-line references and FAQ:

http://www.cplusplus.com

http://en.cppreference.com/w/

https://isocpp.org/faq

http://www.stroustrup.com/C++11FAQ.html

On-line tutorials
http://www.tutorialspoint.com/cplusplus/index.htm

http://www.cplusplus.com/doc/tutorial/

http://www.learncpp.com/

http://www.cprogramming.com/tutorial/c++-tutorial.html

Books (in suggested order)
Accelerated C++: Practical Programming by Example, by A. Koenig and B. E. Moo
The C++ Standard Library: A Tutorial and Reference, 2nd edition, by N. M. Josuttis
C++ Primer (5th edition), by S. B. Lippman, J. Lajoie and B. E. Moo
The C++ Programming Language, 4th edition, B. Stroustrup

More advanced books
Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11 and C++14, S. Meyers
C++ Templates: The Complete Guide, by D. Vandevoorde and N. M. Josuttis
Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions, by E. Sutter
More Exceptional C++: 40 New Engineering Puzzles, Programming Problems, and Solutions, by E. Sutter

http://www.cplusplus.com/
http://en.cppreference.com/w/
https://isocpp.org/faq
http://www.stroustrup.com/C++11FAQ.html
http://www.tutorialspoint.com/cplusplus/index.htm
http://www.cplusplus.com/doc/tutorial/
http://www.learncpp.com/
http://www.cprogramming.com/tutorial/c++-tutorial.html

26 Feb 2015Marco Frailis 11/45Introduction to C++

Integrated Development Environments (IDEs)

Code::Blocks (
http://www.codeblocks.org/)

A lightweight IDE (it is provided in
the virtual machine created for
this course)

Eclipse CDT
(https://eclipse.org/cdt/)

NetBeans IDE (https://netbeans.org/features/cpp/)

Emacs (http://www.gnu.org/software/emacs/)

Coding Ground (http://www.tutorialspoint.com/compile_cpp11_online.php)

An on-line web IDE, for short tests and examples

Others:

QT Creator, Xcode (Mac OS X), Visual Studio (Windows)

http://www.codeblocks.org/
https://eclipse.org/cdt/
https://netbeans.org/features/cpp/
http://www.gnu.org/software/emacs/
http://www.tutorialspoint.com/compile_cpp11_online.php

26 Feb 2015Marco Frailis 12/45Introduction to C++

C++ program: main function example
Including standard library
functions and classes

Constants definitions

Main function definition
for the executable

#include <cmath>
#include <iostream>

using namespace std;

const double PI = 3.1415926535897931;

const double RAD2DEG = 180.0/PI;

// Convert Cartesian coordinates to spherical coordinates
int main()
{
 // Coordinates to be converted
 double x=10.3, y=-5.2, z=36;

 // Norm
 double r = sqrt(x*x + y*y + z*z);

 // Longitude
 double phi = atan2(y, x);
 phi = phi < 0 ? phi + 2*PI : phi;

 // Colatitude
 double theta = acos(z/r);

 cout << "Longitude = " << phi*RAD2DEG << " deg, Colatitude = "
 << theta*RAD2DEG << " deg, Radius = " << r << endl;

 return 0;
}

statements for
coordinates
conversion

Printing output

26 Feb 2015Marco Frailis 13/45Introduction to C++

Compiling with GNU g++

C++ source code should be given one of the valid C++ file extensions:
.cpp, .cc, .cxx or .C, while the .c extension is reserved to C programs

Saving the previous source code in file “coord.cpp”, in order to compile
it and create an executable, we can use the GNU g++ compiler:

$ g++ -std=c++11 coord.cpp -o coord

This command compiles the source code to machine code, saving it in
the executable file “coord”

The option “-std=c++11” enables compiler support for the 2011 ISO
C++ standard

26 Feb 2015Marco Frailis 14/45Introduction to C++

The #include preprocessor1 directive

Many C++ fundamental facilities, such as I/O, are not part of the core
language

They are part of the standard library. These facilities are requested
using the #include directive

Example: requesting the I/O standard library facilities and standard
strings

where iostream and string are called a standard headers

Including a header file produces the same results as copying the
header file into each source file that needs it

Normally the include directives are inserted at the beginning of a
source file

1The preprocessor is a macro processor, called by the compiler to transform the program before
compilation

#include <iostream>
#include <string>

26 Feb 2015Marco Frailis 15/45Introduction to C++

Variable definition and initialization

A variable (also called object in C++) provides a named storage (a
region of memory) that our program can manipulate

Each variable definition starts with a type specifier, followed by a
comma separated list of one or more names (identifiers)

A definition may also provide an initial value for the object (initialization)

C++ supports four forms of variable initialization: copy-initialization,
direct-initialization, list-copy-initialization, list-direct-initialization

It is safer to initialize every object of built-in type

int day, month, year;
double salary;

int month = 9, year = 2012, day; // copy-initialization
double salary(1250.23); // direct-initialization

std::complex<float> c = {-1.0, 0.0}; // list-copy-initialization
long int count{35600}; // list-direct-initialization

C++11

OK for built-in
types

Recommended
for class types

26 Feb 2015Marco Frailis 16/45Introduction to C++

C++ built-in types

Additional character types: wchar_t and char16_t and char32_t,
for Unicode characters (UTF-16 and UTF-32)

// Boolean type
bool empty = true;

// Character types
char single_letter = 'D';

// Integer types
char tiny_value = 127;
short small_value = 32767;
int value = 2147483647;
long large_value = 2147483647;
long long huge_value = -9.22E18LL;

// Unsigned integer types
unsigned char r = 255;
unsigned short small_pvalue = 65535;
// ...etc.

//Floating point types
float temperature = 2.323787;
double theta = 2.663832728147556;
long double ltheta = 2.6638327281475567373L;

26 Feb 2015Marco Frailis 17/45Introduction to C++

Literals

Literal integer constants
Notations:

242 /* decimal */ 0362 /* octal */ 0xF2 /* hexadecimal */

Integer literal types: int or long by default, depending on value.
Use of suffix to force type

128U /* unsigned int */ 12ULL /* unsigned long long */

Floating point literals: double by default
 2.323787F /* float */ 2.6638327281475567373L /* long double */

Character literals (char type, ASCII): 'a' '3'
Nonprintable characters: use of escape sequence
'\n' /* newline */ '\t' /* horizontal tab */ '\?' /* question mark */

 '\'' /* single quote */ '\"' /* double quote */ '\0' /* null character */

String literals are arrays of characters
 "\tHello World\n" "" /* empty string */

26 Feb 2015Marco Frailis 18/45Introduction to C++

Expression: Arithmetic, relational and logical
operators

An expression is composed of one or more operands and (usually) an
operator; it produces a result

Arithmetic operators:

a + b a - b
a * b a / b

a % b

Relational operators:

a < b a <= b
a > b a >= b
a == b a != b

Logical operators

Reminder after
division a / b

Operator Meaning Example

&& and (a >= 0) && (a < 5)

|| or (a < 0) || (a >= 5)

! not !((a >= 0) && (a < 5))

26 Feb 2015Marco Frailis 19/45Introduction to C++

Bitwise operators

Bitwise operators:
Operator Meaning Example

<< left shift a << 3

>> right shift a >> 2

& bitwise and a & mask

| bitwise or a | mask

^ bitwise xor a ^ mask

~ bitwise not ~mask

unsigned char a = 20, mask = 1; // i.e. a = 00010100, mask = 00000001

a >> 2 // result = 00000101
mask << 3 // result = 00001000
~mask // result = 11111110

a & (mask << 4) // result = 00010000 (check if bit 4 is set)
a | (mask << 1) // result = 00010110 (set bit 1)
a ^ (mask << 3) // result = 00011100 (flip bit 3)

26 Feb 2015Marco Frailis 20/45Introduction to C++

Assignment and compound assignment
operators

The result of an assignment is the left-hand operand

We often apply an operator to an object and reassign the result to the
same object:

index = index + step * deltaT;

C++ provides compound-assignment operators as a shorthand, for
arithmetic and bitwise operators

index += step * deltaT; // equivalent to the previous statement

// definition and initialization
int index = 0 , step = 5;
double deltaT = 0;

// assignment
deltaT = 0.3;
index = step * deltaT ; // here an implicit truncation is performed

26 Feb 2015Marco Frailis 21/45Introduction to C++

Increment and decrement operators

Increment (++) and decrement (--) operators can be used as a
shorthand for adding or subtracting 1 from an object

There are two forms of these operators: prefix and postifix

The prefix form increment (decrement) its operand and yelds the
changed value as its result

The postfix form increment (decrement) its operand but yelds a copy of
the original, unchanged value as its result

int i = 0, j;

j = ++i; // j = 1 , i = 1;
j = i++; // j = 1 , i = 2;

26 Feb 2015Marco Frailis 22/45Introduction to C++

Implicit type conversions

In expressions with operands of mixed types, the types are converted
to a common type by the compiler

For arithmetic conversions, the rules define a hierarchy of conversions
in which operands are converted to the widest type in the expression

The conversion rules are defined so as to preserve the precision of the
values involved

Conversion to/from bool:
Integral and floating-point values can be converted to bool. If the value is
0, the resulting bool is false, otherwise it is true.
bool can be converted to other types: true is converted to 1, false to 0

26 Feb 2015Marco Frailis 23/45Introduction to C++

Explicit conversions

An explicit conversion is spoken of as a cast

C old-style cast:

int x = 37, y = 6;
float result = (float) x / y; // or float(x) / y

Casts should be discouraged: they turn off normal type-checking

C++ tries to make casts more visible providing named cast operators:

 result = static_cast<float>(x) / y;

Additional C++ named cast operators:

dynamic_cast, const_cast, reinterpret_cast

26 Feb 2015Marco Frailis 24/45Introduction to C++

Strings in C++
The Standard Library provides the string type to support variable length
character strings

The library takes care of managing the memory associated with storing the
characters

It provides several ways to initialize a string variable:

string is part of the std namespace

A namespace is a collection of related names: the standard library uses std to
contain all the names that it defines

std::string is a qualified name, using the scope operator (::)

#include <string>

int main()
{
 std::string s1; // s1 is an empty string
 std::string s2(s1); // s2 is initialized as a copy of s1
 std::string s3("swing") // s3 is a copy of the string literal
 std::string s4(5,'-'); // s4 = "-----"
}

26 Feb 2015Marco Frailis 25/45Introduction to C++

String operations
#include <string>

using namespace std;

int main()
{
 string s1;
 string s2 = "Hell0";
 string s3 = s2 + " World"; // string + literal concatenation

 bool isEmpty = s1.empty(); // check if s1 is an empty string
 char first = s3[0]; // get the first character
 s3[4] = 'o'; // modify the 5th character in s3
 bool isLess = s2 < s1; // comparison operator between strings
 // (lexicographic order)
 s1 = s2; // copy s2 in s1, replacing s1 characters
 string s4 = s3.substr(6, 5) // get the substring starting at index 6
 // and taking 5 chars (s4 = "World")
 string::size_type size = s4.size(); // get string size in bytes
}

Type defined in the string class:
synonym of an unsigned int, but more portable

26 Feb 2015Marco Frailis 26/45Introduction to C++

C++ Input/Output

The standard library defines a family of types that support I/O to and from
devices such as files and console windows. Additional types allow strings to
act like I/O streams

The I/O types are defined in three separate headers:

<iostream> defines the types used to read from and write to a console
window

<fstream> defines the types used to read from and write to named files

<sstream> defines the types used to read from a and write to in-
memory strings

The iostream header includes the definition of three I/O objects:
The istream object named cin, also referred to as standard input

The ostream object named cout, also referred to as standard output

The ostream object named cerr, also referred to as standard error

26 Feb 2015Marco Frailis 27/45Introduction to C++

Standard I/O example

The stream operators (<< and >>) are left associative and return the
left operand, i.e. the stream object)

So we can chain the stream operations

#include <iostream>
using namespace std;

int main()
{
 cout << "Please, insert two numbers:" << endl;
 float v1, v2;

 cin >> v1 >> v2;

 cout << "The sum of " << v1 << " and " << v2
 << " is " << v1 + v2 << endl;
 return 0;
}

26 Feb 2015Marco Frailis 28/45Introduction to C++

Formatting floating point values

Output:

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
 const double PI = 3.1415926535897931;

 cout << PI << endl;
 cout << setprecision(15) << PI << endl;
 cout << scientific << PI << endl;
 cout << fixed << setw(20) << PI << endl; // setw sets the field width
 cout << resetiosflags(ostream::floatfield); // revert to default notation

 cout << PI << endl;
}

3.14159
3.14159265358979
3.141592653589793e+00
 3.141592653589793
3.14159265358979

I/O format state (parametric)
manipulators

26 Feb 2015Marco Frailis 29/45Introduction to C++

Statements

Most statements in C++ end with a semicolon

We have already seen some expression statements
i.e. an expression followed by a semicolon
Commonly expression statements affect the program's state: assignment,
increment, input/output operators, declaration statements

 A compound statement, or block, is a (possibly empty) sequence of
statements surrounded by a pair of curly braces

Compound statements can be used where the rules of the language
require a single statement

26 Feb 2015Marco Frailis 30/45Introduction to C++

Scope of a name

Every name in a C++ program must refer to a unique entity (e.g. a variable,
function, type, etc.)

A name can be reused, also with different meanings, as long as it is used in
different context

Such context is the scope, i.e. a region of the program

There are different kinds of scope:
The statements between a pair of matching braces form a scope. The body of
the main or the body of every function and the scopes nested inside a function
(such as a block) form local scopes
Names defined outside any function have global scope. They are accessible
from anywhere in the program
Namespaces partition the global namespace. A namespace is a scope, as we
have already seen with the standard library namespace std
Every class defines its own new scope. An examples is given by the type
size_type of the string class

26 Feb 2015Marco Frailis 31/45Introduction to C++

Scope example

Output:

#include <iostream>

using namespace std;

const string s = "---------";

int main()
{
 unsigned int s = 0;

 {
 unsigned int s = 1;
 cout << "Inner s: " << s << endl;
 }

 cout << "Outer s: " << s << endl;
 cout << "Global s: " << ::s << endl;

 return 0;
}

Inner s: 1
Outer s: 0
Global s: ---------

Global const variable

s is a variable in the main
function local scope

In this block, s definition
hides the outer one

26 Feb 2015Marco Frailis 32/45Introduction to C++

if statement

Second if form: without the else branch

if (rawVal > 90) {
 cout << "Warning: hard limit exceeded" << endl;
 ++hardLimit ;
}
else if (rawVal > 70)
 ++softLimit;
else {
 sum += rawVal;
 ++numSamples;
}

Statement 1

Condition

Statement 2

if (i < j)
 ++i;

26 Feb 2015Marco Frailis 33/45Introduction to C++

while and do while statements

while (i > 0 && v[i] < key) {
 v[i+1] = v[i];
 --i;
}

Condition

Statement

double threshold = -1;
do {
 cout << "Please enter a threshold level in the range [0, 1]"
 << endl;
 cin >> threshold;
} while (threshold < 0 || threshold > 1);

while statement

do-while statement

Statement executed
at least once

int i = 0;
while (i < size) {
 // operations that don't
 // change the value of i
 ++i;
}

Recurrent pattern:
for loop

26 Feb 2015Marco Frailis 34/45Introduction to C++

for and range-based for loops

for (int i = 1, j = 0; i < v.size(); i += 2, ++j) {
 s[j] = (v[i-1] + v[i])/2;
 d[j] = v[i-1] - s[j];
}

init-statement condition expression statement

for statement

Executed after body
of for loop

for (int x : v) {
 sum += x;
 sum2 += x*x;
}

range-for statement

for each value x in
range v

for (;;) {
 cout << "Processing next event" << endl:
 checkEventQueue();
 if (stopExecution)
 break;
}

for (int i = 0; i < v.size(); ++i)
{
 if (v[i] < 0 || v[i] > 5)
 continue;
 sum += v[i];
}

Infinite loop until event

C++11

ends the nearest enclosing loop

skip rest of
iteration

26 Feb 2015Marco Frailis 35/45Introduction to C++

switch-case statement

int apId = packet.apId();

switch (apId) {
 case 1536:
 case 1538:
 ++lfiHkCounter; // LFI housekeeping telemetry found
 break;
 case 1540:
 ++lfiSciCounter; // LFI scientific telemetry found
 break;
 default:
 cout << "Unknown telemetry packet" << endl;
}

expression with integral result

It provides a more convenient way to write deeply nested if/else logic

The result of the expression is compared with the value associated with
each case

Execution starts with the first statement following the matching label, till a
break is found

26 Feb 2015Marco Frailis 36/45Introduction to C++

Standard vector 1/3
The standard library provides a type, named vector, that holds a sequence of values of a
given type and grows as needed

It is defined using a language feature called template classes
#include <iostream>
#include <vector>
#include <complex>

using namespace std;

int main()
{

 int n = 10;
 vector<float> a(n, 5.0); // a has n elements that are copies of 5.0
 vector<int> b = {3,2,7,11,23}; // b contains the elements provided in the list

 cout << "First and last elements of b: "
 << b[0] << " " << b[b.size()-1] << endl;

 // vector from a list of numbers gathered from the standard input
 double value;
 vector<double> c;
 cout << "Please insert some values (use Ctrl-D to end): " << endl;

 // The user ends inputting numbers with the EOF character
 while (cin >> value)
 c.push_back(value); // appends a new element at the end of vector c

Template
parameter

Continue ...

C++11

26 Feb 2015Marco Frailis 37/45Introduction to C++

Standard vector 2/3
 // Print vector elements
 cout << "c elements: ";
 for (double x : c)
 cout << x << " ";
 cout << endl;

 vector<double> d(c); // defines d as a copy of c

 // e holds a copy of the first half of d
 vector<double> e(d.begin(), d.begin() + d.size()/2);

 c.clear(); // removes all elements in c; c.size() == 0

 // erase elements of first half of d
 d.erase(d.begin(), d.begin() + d.size()/2);

 c = e; // c is now a copy of e

 // prepend elements of a in e
 e.insert(e.begin(), a.begin(), a.end());

 vector<complex<double>> f;
 f.push_back({1, -1}); // analogous to push_back(complex<double>(1,-1)), but shorter
 // thanks to initializer list
 f.emplace_back(1, -1); // emplace_back is analogous to push_back but it just needs the
 // arguments to construct the value, which is created in-place
}

C++11

26 Feb 2015Marco Frailis 38/45Introduction to C++

Standard vector 3/3

vector is one of the sequential containers provided by the standard
library

To support fast random access to the elements, vector elements are
stored contiguously

Vectors grow dynamically: they allocate capacity beyond what is
immediately needed, as a reserve for new elements

When the capacity is exceeded, a new block of contiguous memory is
automatically allocated (e.g. by a factor of 2 larger than the previous one)
Vector class provides two member functions concerning its memory block:
vector::capacity() and vector::reserve(n)

0 1 2 3 31 32

vector<int> a;
a.size() == 33;

a.capacity() == 64

vector<int> a;
for (int i = 0; i < 33; ++i) {
 a.push_back(i);
 cout << "a capacity: "
 << a.capacity()
 << endl;
}

a.reserve(n) lets us set the initial vector capacity

26 Feb 2015Marco Frailis 39/45Introduction to C++

The auto type specifier and type aliases

When a definition of a variable has an initializer, we can let the variable
 have the type of the initializer using the auto type “placeholder”

When defining a variable with auto, prefer the “=” syntax

Sometime we need a new name for a type, e.g. because it is too long
or complex or because we need different types to have same name

vector<complex<double>> v = {{1,0}, {1,-1}, {0,1}, {0,-1}};

auto size = v.size();

cout << "v elements: ";
for (auto x : v)
 cout << x << " ";
cout << endl;

The size variable has type
vector<complex<double>>::size_type

x has type
complex<double>

using vec_compd = vector<complex<double>>;

vec_compd v = {{1,0}, {1,-1}, {0,1}, {0,-1}}; typedef vector<complex<double>> vec_compd;

Older syntax using typedef

C++11

C++11

26 Feb 2015Marco Frailis 40/45Introduction to C++

Functions

Functions are named computations. We can identify important parts of
our problems and create named computations corresponding to those
parts

A function is defined by specifying its return type, followed by the
function name and then by a parameter list enclosed in () and finally
the function body, which is enclosed in {}

A function is uniquely represented by its name and the list of
parameter types. They form the so called function signature

int gcd(int v1, int v2) // return the greatest common divisor
{
 while (v2) {
 int temp = v2;
 v2 = v1 % v2;
 v1 = temp;
 }
 return v1;
}

26 Feb 2015Marco Frailis 41/45Introduction to C++

Argument passing

In the previous example, parameters are passed by value, i.e. they
are initialized by copying the corresponding argument

When we pass built-in types by value, the cost of copying them into the
function parameters is negligible

However, if we need to pass a long vector or string, copying them can
be time consuming

Often, we also need to define functions that modify the arguments
passed, or we need them to return additional information to the caller

26 Feb 2015Marco Frailis 42/45Introduction to C++

References and const references

A reference to an object is another name, or synonym for that object

In the example above, variable s is defined as a reference (synonym) to
samples

Any operation performed on s is equivalent to doing the same to samples,
and vice versa

A reference always refers to the object to which it was initialized (no null
references)

The main use of references is for specifying arguments and return values
for functions in general

When we add a const to a reference, we can only use the reference to
read values from the original object, but we cannot change its values (no
write access)

vector<double> samples;

vector<double>& s = samples; // s is a synonym for samples

26 Feb 2015Marco Frailis 43/45Introduction to C++

Argument passing: const references

The type that we specify for the function argument is called “reference
to const vector of double”

No copy of the actual argument passed with the function call (efficient)
The actual argument is passed as a read-only object

In the range-for within the function body, x is a const reference to each
element in samples (no copy performed)

double mean(const vector<double>& samples)
{
 auto size = samples.size();

 if (size == 0)
 throw domain_error("mean of an empty vector");

 double sum = 0;
 for (const auto& x : samples)
 sum += x;
 return sum/size;
}

samples is a synonym for the
actual argument (a vector)
passed in the function call

each element in samples is
passed to x as const reference

26 Feb 2015Marco Frailis 44/45Introduction to C++

Argument passing: non-const reference

There are situations where passing parameters by value or using const
references don't work. For instance, in a simple function that swaps two
values we need to use non-const references:

This function has no return value. Its return type is void, a C/C++ built-
in type used in a few restricted ways, e.g. to name a return type

The purpose of the swap function is to change its argument values. So
its parameters are declared as references

void swap(int& v1, int& v2)
{
 int tmp = v2;
 v2 = v1;
 v1 = tmp:
}

int main()
{
 int i = 5, j = 20;
 swap(i,j); // After this call: i = 20, j = 5

}

26 Feb 2015Marco Frailis 45/45Introduction to C++

Argument passing: summary

When function parameters are built-in types, they can be passed by
value if the function does not need to change their value

Whenever the function does not need to change the parameter's value,
and the parameter has a type that can be time consuming to copy,
then the parameter should be a const reference

When the function intends to change the arguments values, the
corresponding parameters must be declared as non-const references

Arguments passed as non-const reference parameters must be non-
temporary objects (lvalues)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

