Magnetic fields and radio emission in galaxy clusters: towards the SKA

Annalisa Bonafede

F. Savini, C. Stuardi, F. Vazza +LOFAR survey KSP

Annalisa Bonafede

Galaxy clusters ~100 Galaxies in 9 Mpc³

Dark matter dominated ~80% of the cluster mass

Galaxy clusters ~100 Galaxies in 9 Mpc³

Dark matter dominated ~80% of the cluster mass

Hot Gas T $\sim 10^7 \cdot 10^8$ K n $\sim 1e \cdot 3$ cm⁻³ -> Brehmsstrahlung (soft X)

500 kpc

Galaxy clusters ~100 Galaxies in 9 Mpc³

Dark matter dominated ~80% of the cluster mass

Hot Gas T $\sim 10^7 \cdot 10^8$ K n $\sim 1e \cdot 3$ cm⁻³ \longrightarrow Brehmsstrahlung (soft X)

Magnetic field & Relativistic electrons —> Synchrotron emission (radio) only in some clusters

RADIO SOURCES IN CLUSTERS

CONNECTION WITH DYNAMICAL STATE

The II Italian National workshop of SKA science and technologies

WHAT CAN WE LEARN FROM B STUDIES?

(Re)Acceleration processes - Radio sources in the ICM

Microphysics of the ICM

Small-scale instabilities?

Origin of magnetic fields?

B from AGN (e.g Ryu et al. 08, Donnert et al 09) B amplification from initial seed (e.g. Beresnyak & Miniati 16) Growth of small-scale instabilities (e.g. Kunz 10)

Can reproduce ~ µG magnetic field in cluster cores

See talk by F. Vazza

WHAT CAN WE LEARN FROM B STUDIES?

(Re)Acceleration processes - Radio sources in the ICM

Microphysics of the ICM

Small-scale instabilities?

B from AGN (e.g Ryu et al. 08, Donnert et al 09) B amplification from initial seed (e.g. Beresnyak & Miniati 16) Growth of small-scale instabilities (e.g. Kunz 10)

Can reproduce ~ µG magnetic field in cluster cores

See talk by F. Vazza

Outline

News from [some] SKA precursors LOFAR and JVLA

New techniques, new challenges

Forecasts for the SKA

F. Savini, AB et al. 2018

Annalisa Bonafede

F. Savini, AB et al. 2018

Annalisa Bonafede

LOFAR observations (144 MHz) 14"x9" resolution, noise ~200 μ Jy/beam

Emission well beyond the cold fronts!

F. Savini, AB et al. 2018

Annalisa Bonafede

Flat, uniform spectrum in the core

Steep emission SW and NE regions

New mechanism of particle acceleration? Core-sloshing accelerating particles on cluster scale?

F. Savini, AB et al. 2018

Interplay thermal - non-thermal emission

Gas density fluctuations

 $\frac{\delta\rho_k}{\rho} = \eta \frac{V_k}{c_s}$

Zhuravleva et al. 2014, Gaspari et al 2014

Interplay thermal - non-thermal emission

More LOFAR results

A&A Special Issue: LOFAR survey

Authors in the Italian community: Bonafede, Botteon, Brienza, Brunetti, Cassano, Murgia, Prandoni, Vacca, Vazza, Wittor

Conclusions so far

New emission in galaxy clusters

Independent measurement of B needed

HOW CAN WE CONSTRAINT MAGNETIC FIELDS?

Rotation Measure λ^2 fit

$$\Psi_{obs} = \Psi_{int} + K \int_{los} B_{los} n dl \ \lambda^2$$

HOW CAN WE CONSTRAINT MAGNETIC FIELDS?

HOW CAN WE CONSTRAINT MAGNETIC FIELDS?

Annalisa Bonafede

The II Italian National workshop of SKA science and technologies

MODELING OF THE MAGNETIC FIELD

Obtaining mock RM images

observed $(RM) = \int_0^d B_{los} n dl$

MODELING OF THE MAGNETIC FIELD

Obtaining mock RM images

 $RM = \int_0^d B_{los} n dl$ observed

model for gas distribution From X-ray emission/ cosmological simulations

MODELING OF THE MAGNETIC FIELD

Obtaining mock RM images

model for gas distribution From X-ray emission/ cosmological simulations

Obtaining mock RM images

 $B \propto B_0 n_{gas}^{\eta}$

Obtaining mock RM images

 $B \propto B_0 n_{gas}^{\eta}$

Annalisa Bonafede

Obtaining mock RM images

 $B \propto B_0 n_{gas}^{\eta}$

The II Italian National workshop of SKA science and technologies

Annalisa Bonafede

NON-GAUSSIAN COMPONENTS

Primordial magnetic field B₀=0.1nG at z=30 cluster "Coma-like" M ~10¹⁵ Msun Dedner formulation MHD 256³ cells + 8 levels

Vazza et al. (2018)

Figure 4. Map of projected mean magnetic field strength for resimulations of our cluster at an increasing resolution, for regions of 8.1×8.1 Mpc² around the cluster centre at z = 0. Each panel shows the mass-weighted magnetic field strength (in units of $\log_{10}[\mu G]$ for a slice of ≈ 250 kpc along the line of sight.

Annalisa Bonafede

NON-GAUSSIAN COMPONENTS

Primordial magnetic field B₀=0.1nG at z=30 cluster "Coma-like" M ~10¹⁵ Msun Dedner formulation MHD 256³ cells + 8 levels

Vazza et al. (2018) Figure cluster Annalisa Bonafede

Figure 4. Map of projected mean magnetic field strength for resimulations of our cluster at an increasing resolution, for regions of 8.1×8.1 Mpc² around the cluster centre at z = 0. Each panel shows the mass-weighted magnetic field strength (in units of $\log_{10}[\mu G]$ for a slice of ≈ 250 kpc along the line of sight.

MAGNETIC FIELD DISTRIBUTION

Departure from Gaussian distribution

Amplitude of non-Gaussian tail depends on time and cluster dynamics

Vazza et al (2018)

COMPARISON WITH FARADAY ROTATION MEASURES

Vazza et al (2018)

Annalisa Bonafede

B LOWER THAN DERIVED WITH GAUSSIAN FIELDS

 $B \propto B_0 n_{gas}^{\eta}$

Conclusions so far

 $P \propto \gamma_L^2 B^2$ Independent measurement of B needed

Emission from background sources to constrain B —> not enough!

Statistical approach: 80 h JVLA L band, to sample RM through all clusters with double relics

Statistical approach: 80 h JVLA L band, to sample RM through all clusters with double relics

RXCJ1314.4-2515 Colors: XMM-Newton Contours: JVLA L band B+C array Chiara Stuardi AB et al (in prep) The II Italian National workshop of SKA science and technologies

Annalisa Bonafede

Stuardi, AB et al. (in prep)

Annalisa Bonafede

-600

-200

0

 ϕ (rad/m/m)

200

Stuardi, AB et al. (in prep)

Annalisa Bonafede

-600

-200

0

 ϕ (rad/m/m)

200

Stuardi, AB et al. (in prep)

Annalisa Bonafede

-600

-200

0

 ϕ (rad/m/m)

200

B in cluster outskirts: probes from radio relics

Rotation of the polarisation plane from/within the relic!

Stuardi, AB et al. (in prep)

B in cluster outskirts: probes from radio relics

Rotation of the polarisation plane from/within the relic!

Stuardi, AB et al. (in prep)

B in cluster outskirts: probes from radio relics

Rotation of the polarisation plane from/within the relic!

Stuardi, AB et al. (in prep)

Filamentary structure in relics

Filamentary structure in relics

Filamentary structure in relics

Annalisa Bonafede

More new from LOFAR in polarisation!

LOFAR Two meters Sky Survey

Credits: Tasse, Hardcastle, Shimwell

Annalisa Bonafede

More new from LOFAR in polarisation!

Annalisa Bonafede

Conclusions so far

 $P \propto \gamma_L^2 B^2$ Independent measurement of B needed

New emission in galaxy clusters

Emission from background sources to constrain B —> not enough!

Emission from extended sources detected! Not trivial interpretation

SKA: RM grid from a single cluster

315 polarised sources / sq degree at 1 µJy at 1.6 arcsec resolution (Rudnick & Owen 2014)

Bonafede et al (2015)

RM grid - a Coma-like cluster with SKA

Johnston-Hollitt et al 15

Conclusions

- New emission in galaxy clusters $P\propto \gamma_L^2 B^2$ Independent measurement of B needed
- Emission from background sources to constrain B —> not enough!
- Emission from extended sources detected! Not trivial interpretation
- Great potential of SKA for B studies BUT need new techniques to fully exploit its capabilities