Searching for exoplanets with SKA

Adriano Ingallinera (INAF - Osservatorio Astrofisico di Catania) Corrado Trigilio, Grazia Umana, Paolo Leto, Carla Buemi, Francesco Schillirò, Filomena Bufano, Simone Riggi, Francesco Cavallaro (The "OACT radio astronomy group")

Credit: ESO/M. Kornmesser

Introduction

Different methods for exoplanet search (and their biases)

- · Radial velocity:
 - more sensitive to massive close-in planets (hot-Jupiters), needs sharp spectral lines and high stellar fluxes (not suitable for very cool stars)
- Transits:
 - more sensitive to large close-in planets in very low-inclination systems, needs high stellar fluxes (not suitable for very cool dwarf stars)

Radio advantages:

- No bias towards low-mass cool stars
- No bias towards planetary mass

Cyclotron maser instability

The main mechanism responsible for the solar system planet radio emission is the so-called "cyclotron maser instability" (CMI).

Leto et al. 2016

Cyclotron maser instability

CMI takes place when free electrons:

- are accelerated to ~keV by:
 - magnetic reconnection in equatorial regions of the magnetosphere perturbed by the stellar wind
 - MHD shocks by magnetized orbiting bodies (dipolar inductors) or unmagnetized (unipolar inductors)
- interact with planetary magnetic field (migrating toward the magnetic poles)
- · their energy distribution is inverted
 - pitch angle anisotropy
 - horseshoe distribution (?)

Auroral radio emission (ARE)

Accelerated electrons emit at the local cyclotron frequency $(\nu_B \propto B)$ when they are reflected by magnetic mirroring. Since this emission originates close to magnetic poles, it is called Auroral Radio Emission (ARE).

The ARE is characterized by:

- coherence
- circular polarization (up to 100%)
- time variability
- directivity

The ARE can be observed on magnetized (exo)planets:

• interaction between stellar wind and planet magnetosphere

The ARE can be observed on magnetized (exo)planets:

• interaction between stellar wind and planet magnetosphere

The ARE can be observed on magnetized (exo)planets:

• interaction between stellar wind and planet magnetosphere

ARE on planets:

- ν ~50 100 MHz
- $S \sim 100 \mu Jy$

Lazio et al. 2004

Observations possible only with the advent of SKA

Scenario 2: ARE on a star

The ARE can be observed in stars, and it is caused by:

- interaction between stellar wind and stellar magnetosphere
- · induction due to planets

Being stellar magnetic field more intense than planet ones, stellar ARE is observed at higher frequencies.

Stars where ARE has been observed

- MCP stars
- ultra cool dwarfs

Scenario 2: ARE on a star

ARE on stars induced by planets:

- typical frequencies: ∼1 GHz
- expected flux density: up to ~100 mJy

Trigilio et al. 2018

What can we unveil?

Complementary information with respect to other methods:

- · presence and intensity of a planetary magnetic field
- · hint of internal structure
- · presence of satellites

Current limitations

- For ARE on exoplanets high sensitivity (≤100 µJy) required at low frequencies: unfeasible with current instruments!
- Only few systematic studies on stars: mitigated by SKA precursors' surveys.
- Difficult to observe for enough time to cover all the planet orbital period.

Two case studies

Two stars recently investigated by our group:

- TVLM 513-46546 (Leto et al. 2017)
- α Centauri (Trigilio et al. 2018)

TVLM 513-46546 is a well-studied ultra-cool dwarf.

Stellar parameters:

spectral type: M8.5V

distance: ~10.8 pc

rotation period: ~2 hours

radius: O.11 R_☉

mass: 0.07 M_☉

surface temperature: 2500 K

· No previous evidence of planets

Radio observations carried out with VLA at 4.9 and 8.4 GHz during 2006 (Hallinan et al. 2007).

Phase-folded in Stokes V.

Leto et al. 2017

Still difficult to explain why 8.4-GHz emission is characterized by only one doubly-peaked pulse per stellar rotation.

Unless we suppose that it is constrained within a small range of magnetic longitudes.

This scenario is **very similar to the Jupiter-Io interaction**, which has been also proposed to explain the emission of other ultra-cool dwarfs (e.g. Hallinan et al. 2015).

A possible model where 8.4-GHz emission is triggered by a planet.

Leto et al. 2017

α Centauri

Solar-type stars are difficult to detect at centimeter wavelengths because of very low flux densities.

First detection ever at 17 GHz

- $S(A) = 161 \pm 17 \mu Jy$
- $S(B) = 105 \pm 16 \mu Jy$

Trigilio et al. 2018

α Centauri

Is there a planet around α Centauri B? (proposed by Dumusque et al. 2012, disputed by Rajpaul 2016)

Trigilio et al. 2018

No radio evidence:

- Wrong frequency?
 (Different B intensity)
- Not favorable system geometry?
- Non-dipolar B topology?
- No planet at all?

What's next?

Observations of Trappist-1 (PI C. Trigilio - under reduction)

What's next?

Future observations:

- Targeted observations on a wider and wider sample of known exoplanetary system
- Galactic surveys with SKA precursors (EMU, ...)

Impact on SKA science and commensalities:

- SKA SWG: "Our Galaxy"
- SKA SWG: "Cradle of Life"

Conclusion

The auroral radio emission can supply a complementary method for searching and characterizing exoplanets.

A promising field is represented by the auroral radio emission induced by planets on stars.

The light curves of TVLM 513-46546 can be well reproduced by the presence of a planet in close-in orbit.

We posed upper limits on the presence of a planet around α Cen B.

Observations of Trappist-1 are under reduction.

The advent of SKA will allow a great expansion of the possible targets and to search for ARE directly on exoplanets.