**Observing the Cosmic Dawn and Epoch of Reionization** with the 21-cm line

**Gianni Bernardi** 

Special kudos: C. Carilli, H. Garsden, A. Ghosh, L. Greenhill, A. Mesinger, C. Nunhokee, M. Spinelli, N. Thyagarajan + HERA collaboration

# What physics?



**21-cm cosmology observational requirements/challenges** 

 Low frequency (< 200 MHz) interferometers with large collecting area → high brightness sensitivity, a lot of collecting area within a few km. SKA-low is tailored to measure the CD/EoR signal; **21-cm cosmology observational requirements/challenges** 

 Low frequency (< 200 MHz) interferometers with large collecting area → high brightness sensitivity, a lot of collecting area within a few km. SKA-low is tailored to measure the CD/EoR signal;

2) Foreground separation/isolation;

# **Foreground separation/isolation**



#### coldest regions are ~100-200 K

## **Foreground separation/isolation**



GB et al. (2009)

## **Foreground separation/isolation**



 $\delta T$  (mK) at z=7.02 (117 MHz) with [5',0.8 MHz]

Mellema et al. (2015)

# A tale of 20 years...



# LOFAR







### **PAPER**

## So far only upper limits... still some ground to cover...



## ... but with a recent, unexpected upturn!



#### Bowman et al. (2018), see also Braun's talk

# ... but with a recent, unexpected upturn!



if the origin is cosmological (also see Spinelli's talk) it needs a complete re-thinking of current models

Bowman et al. (2018)

# Large-aperture Experiment to detect the Dark Ages (LEDA) or chasing the sky-averaged 21-cm signal from the Cosmic Dawn



- four V-inverted dipoles sensitive to the 21-cm emission in the 15 < z < 35 range;
- custom built front-end for calibration;
- site: Owens Valley (CA);

GB, Greenhill & McQuinn (2015); Price, Greenhill, Fialkov, GB et al. (2018)

# **LEDA early results**



- four V-inverted dipoles sensitive to the 21-cm emission in the 15 < z < 35 range;
- custom built front-end for calibration;
- site: Owens Valley (CA);

Price, Greenhill, Fialkov, GB et al. (2018)

### **LEDA current status**



#### **LEDA current status**



12-day averaged spectrum (11 h < LST < 12 h, effectively 4 hours on the sky):  $\sim$ 1.1 K residual rms

Room for improvement: add 10 more days (with broader LST range), improve the RFI rejection, + ...

# The Hydrogen Epoch of Reionization Array (HERA) or the next 21-cm cosmology interferometer

Location: S30° 34', E21° 25' E (South Africa) Configuration: 331 hex-pack, 21 outriggers - Min baseline: 14.6m (7.8° scale) - Max baseline: 1066m (9' beam) Array core: 310m diameter Element: 14m diameter (9° fov @150 MHz)

#### Frequency

- Digitized: 50 250 MHz
- EOR band: 100 200 MHz
- Channel: 97.7 kHz

$$\mathbf{T_{sys}} = 100 + T_{sky}$$



## **HERA collaboration**

**Aaron Parsons (PI)** Zuhra Abdurashidova **James Aguirre Gianni Bernardi Judd Bowman Rich Bradley** Phil Bull **Chris** Carilli **Cherie Day Dave DeBoer** Eloy de Lera Acedo **Steve Furlanetto Brian Glendenning Bryna Hazelton Jacqueline Hewitt** Jack Hickish **Danny Jacobs Adrian** Liu **Dave MacMahon Andrei Mesinger Miguel Morales** 

**Jonathan Pober** Nima Razavi-Ghods **Daniel Riley Kathryn Rosie Alexander Rudolph Mario Santos Jon Sievers** Ian Sullivan Max Tegmark **Dan Werthimer Peter Williams Adam Beardsley Josh Dillon Bradley Greig** Zaki Ali Saul Kohn **Abraham Neben Matt Kolopanis Paul La Plante** Juan Mena Parra Jordan Mirocha

**Steven Murray Ridhima Nunhokee** Nipanjana Patra Nithyanandan Thyagarajan **Nichole Barry Jacob Burba Ruby Byrne Carina Cheng** Nic Fagnoni **Deepthi Gorthi** Nick Kern **Josh Kerrigan Adam Lanman** Victor Li Wenyang Li Zak Martinot Honggeun Kim

# **HERA specs**

| Instrument Design Specification                               | Observational Performance                                |  |
|---------------------------------------------------------------|----------------------------------------------------------|--|
| Element Diameter: 14 m                                        | Field of View: 9°                                        |  |
| Minimium Baseline: 14.6 m                                     | Largest Scale: 7.8                                       |  |
| Maximum Core Baseline: 292 m                                  | Core Synthesized Beam: 25'                               |  |
| Maximum Outrigger Baseline: 876 m                             | Outrigger Synthesized<br>Beam: 11'                       |  |
| EOR Frequency Band: 100-200 MHz                               | Redshift Range: $6.1 < z < 13.2$                         |  |
| Extended Frequency Range: 50-250 MHz                          | Redshift Range: $4.7 < z < 27.4$                         |  |
| Frequency Resolution: 97.8 kHz                                | LoS Comoving Resolution: 1.7 Mpc (at $z = 8.5$ )         |  |
| Survey Area: $\sim 1440 \text{ deg}^2$                        | Comoving Survey Volume:<br>~150 Gpc <sup>3</sup>         |  |
| $T_{\rm sys}$ : 100 + 120( $\nu$ /150 MHz) <sup>-2.55</sup> K | Sensitivity after 100 hr: 50 $\mu$ Jy beam <sup>-1</sup> |  |
| Note. Angular scales computed at 150 MH                       | Ζ.                                                       |  |
| 154m                                                          |                                                          |  |



# HERA at the SKA SA site



## HERA at the SKA SA site





Highly redundant configuration to boost sensitivity on selected 21-cm modes, A number of outriggers to aid foreground modelling and calibration

## **HERA constraints on CD/EoR**



deBoer et al. (2017)

## Early science has started...



## ... including foreground separation/isolation



### and modelling systematic effects



Ghosh, Mertens, GB et al., in prep

# Conclusions

- We are actively pursuing a confirmation (or lack) of the anomalous global 21-cm signal claimed by EDGES: hopefully an answer in the next few months;
  - 2) HERA (the most sensitive 21-cm SKA precursor) is coming online: upper limits appearing in 2019 (?);
  - 3) The Italian CD/EoR community is still small but very active;
- 4) The measurement of the 21-cm signal from the CD/EoR is where SKA-low will really be transformational, probing a redshift range inaccessible to any other probe;