Observing the Cosmic Dawn and Epoch of Reionization with the 21-cm line

Gianni Bernardi

What physics?

credit: Greig & Mesinger, see also Mesinger’s talk
21-cm cosmology observational requirements/challenges

1) Low frequency (< 200 MHz) interferometers with large collecting area \rightarrow high brightness sensitivity, a lot of collecting area within a few km. SKA-low is tailored to measure the CD/EoR signal;
21-cm cosmology observational requirements/challenges

1) Low frequency (< 200 MHz) interferometers with large collecting area → high brightness sensitivity, a lot of collecting area within a few km. SKA-low is tailored to measure the CD/EoR signal;

2) Foreground separation/isolation;
Foreground separation/isolation

coldest regions are $\sim 100-200 \text{ K}$
Foreground separation/isolation

GB et al. (2009)
Foreground separation/isolation

δT (mK) at $z=7.02$ (117 MHz) with [5',0.8 MHz]

Mellema et al. (2015)
A tale of 20 years…

LOFAR

MWA

PAPER
So far only upper limits... still some ground to cover...
... but with a recent, unexpected upturn!

Bowman et al. (2018), see also Braun’s talk
... but with a recent, unexpected upturn!

if the origin is cosmological (also see Spinelli’s talk) it needs a complete re-thinking of current models

Bowman et al. (2018)
Large-aperture Experiment to detect the Dark Ages (LEDA) or chasing the sky-averaged 21-cm signal from the Cosmic Dawn

- four V-inverted dipoles sensitive to the 21-cm emission in the $15 < z < 35$ range;
- custom built front-end for calibration;
- site: Owens Valley (CA);

GB, Greenhill & McQuinn (2015);
Price, Greenhill, Fialkov, GB et al. (2018)
LED A early results

- four V-inverted dipoles sensitive to the 21-cm emission in the $15 < z < 35$ range;
- custom built front-end for calibration;
- site: Owens Valley (CA);

Price, Greenhill, Fialkov, GB et al. (2018)
LEDA current status
12-day averaged spectrum ($11 \text{ h} < \text{LST} < 12 \text{ h}$, effectively 4 hours on the sky):

\sim1.1 K residual rms

Room for improvement: add 10 more days (with broader LST range), improve the RFI rejection, + …
The Hydrogen Epoch of Reionization Array (HERA) or the next 21-cm cosmology interferometer

Location: S30° 34’, E21° 25’ E (South Africa)

Configuration: 331 hex-pack, 21 outriggers
- **Min baseline:** 14.6m (7.8° scale)
- **Max baseline:** 1066m (9’ beam)

Array core: 310m diameter

Element: 14m diameter (9° fov @150 MHz)

Frequency
- **Digitized:** 50 - 250 MHz
- **EOR band:** 100 - 200 MHz
- **Channel:** 97.7 kHz

\[T_{sys} = 100 + T_{sky} \]
HERA collaboration

<table>
<thead>
<tr>
<th>Aaron Parsons (PI)</th>
<th>Jonathan Pober</th>
<th>Steven Murray</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuhra Abdurashidova</td>
<td>Nima Razavi-Ghods</td>
<td>Ridhima Nunhokee</td>
</tr>
<tr>
<td>James Aguirre</td>
<td>Daniel Riley</td>
<td>Nipanjana Patra</td>
</tr>
<tr>
<td>Gianni Bernardi</td>
<td>Kathryn Rosie</td>
<td>Nithyanandan Thyagarajan</td>
</tr>
<tr>
<td>Judd Bowman</td>
<td>Alexander Rudolph</td>
<td>Nichole Barry</td>
</tr>
<tr>
<td>Rich Bradley</td>
<td>Mario Santos</td>
<td>Jacob Burba</td>
</tr>
<tr>
<td>Phil Bull</td>
<td>Jon Sievers</td>
<td>Ruby Byrne</td>
</tr>
<tr>
<td>Chris Carilli</td>
<td>Ian Sullivan</td>
<td>Carina Cheng</td>
</tr>
<tr>
<td>Cherie Day</td>
<td>Max Tegmark</td>
<td>Nic Fagnoni</td>
</tr>
<tr>
<td>Dave DeBoer</td>
<td>Dan Werthimer</td>
<td>Deepthi Gorthi</td>
</tr>
<tr>
<td>Eloy de Lera Acedo</td>
<td>Peter Williams</td>
<td>Nick Kern</td>
</tr>
<tr>
<td>Steve Furlanetto</td>
<td>Adam Beardsley</td>
<td>Josh Kerrigan</td>
</tr>
<tr>
<td>Brian Glendenning</td>
<td>Josh Dillon</td>
<td>Adam Lanman</td>
</tr>
<tr>
<td>Bryna Hazelton</td>
<td>Bradley Greig</td>
<td>Victor Li</td>
</tr>
<tr>
<td>Jacqueline Hewitt</td>
<td>Zaki Ali</td>
<td>Wenyang Li</td>
</tr>
<tr>
<td>Jack Hickish</td>
<td>Saul Kohn</td>
<td>Zak Martinot</td>
</tr>
<tr>
<td>Danny Jacobs</td>
<td>Abraham Neben</td>
<td>Honggeun Kim</td>
</tr>
<tr>
<td>Adrian Liu</td>
<td>Matt Kolopanis</td>
<td></td>
</tr>
<tr>
<td>Dave MacMahon</td>
<td>Paul La Plante</td>
<td></td>
</tr>
<tr>
<td>Andrei Mesinger</td>
<td>Juan Mena Parra</td>
<td></td>
</tr>
<tr>
<td>Miguel Morales</td>
<td>Jordan Mirocha</td>
<td></td>
</tr>
</tbody>
</table>
HERA specs

<table>
<thead>
<tr>
<th>Instrument Design Specification</th>
<th>Observational Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element Diameter: 14 m</td>
<td>Field of View: 9°</td>
</tr>
<tr>
<td>Minimum Baseline: 14.6 m</td>
<td>Largest Scale: 73.8</td>
</tr>
<tr>
<td>Maximum Core Baseline: 292 m</td>
<td>Core Synthesized Beam: 25′</td>
</tr>
<tr>
<td>Maximum Outrigger Baseline: 876 m</td>
<td>Outrigger Synthesized Beam: 11′</td>
</tr>
<tr>
<td>EOR Frequency Band: 100–200 MHz</td>
<td>Redshift Range: 6.1 < z < 13.2</td>
</tr>
<tr>
<td>Extended Frequency Range: 50–250 MHz</td>
<td>Redshift Range: 4.7 < z < 27.4</td>
</tr>
<tr>
<td>Frequency Resolution: 97.8 kHz</td>
<td>LoS Comoving Resolution:</td>
</tr>
<tr>
<td>Survey Area: (\sim 1440 \text{ deg}^2)</td>
<td>1.7 Mpc (at (z = 8.5))</td>
</tr>
<tr>
<td>(T_{\text{sys}} = 100 + 120(\nu/150\text{MHz})^{-2.55}) K</td>
<td>Comoving Survey Volume: (\sim 150 \text{ Gpc}^3)</td>
</tr>
<tr>
<td></td>
<td>Sensitivity after 100 hr:</td>
</tr>
<tr>
<td></td>
<td>50 (\mu\text{Jy beam}^{-1})</td>
</tr>
</tbody>
</table>

Note. Angular scales computed at 150 MHz.
HERA at the SKA SA site
HERA at the SKA SA site
Highly redundant configuration to boost sensitivity on selected 21-cm modes,
A number of outriggers to aid foreground modelling and calibration
HERA constraints on CD/EoR

Greig & Mesinger (2016)
'Gold Sample' constraints
HERA + Planck priors
With 25% modeling error on $P_{21}(k)$
Lyman-α emission fraction
Quasar near zone
Lyman-α galaxy clustering
Dark Lyman-α forest pixels

Observed Frequency (MHz)

Δ^2 (mK^2)

Redshift z

Fiducial Model
CDM Annihilation
Large Halos
HERA-350

deBoer et al. (2017)
Early science has started...
... including foreground separation/isolation

Foreground dominated modes (coherent emission on tens of MHz scales \rightarrow small k modes along the line of sight)

“Foreground free” (EoR) region
and modelling systematic effects
Conclusions

1) We are actively pursuing a confirmation (or lack) of the anomalous global 21-cm signal claimed by EDGES: hopefully an answer in the next few months;

2) HERA (the most sensitive 21-cm SKA precursor) is coming online: upper limits appearing in 2019 (?);

3) The Italian CD/EoR community is still small but very active;

4) The measurement of the 21-cm signal from the CD/EoR is where SKA-low will really be transformational, probing a redshift range inaccessible to any other probe;