Search and modelling of remnant radio galaxies at 150 MHz with LOFAR

Marisa Brienza IRA-INAF, Bologna - PRIN SKA/CTA 'FORCAST"

Simulation from Heinz+2016

Collaborators: **I. Prandoni**, R. Morganti, L. Godfrey, N. Jurlin, M. Murgia, B. Mingo, J. Harwood, E. K. Mahony, M. J. Hardcastle, H. J. A. Röttgering, T. W. Shimwell, A. Shulevski

WHY ?

Radio galaxy evolution models

Provide useful constraints to the physical mechanisms acting in radio galaxies

AGN feedback

The modelling of their radio spectrum gives indications on the timescales of the jets activity

Morganti+17

Galaxy clusters

May provide seed particles for relics and halos in cluster of galaxies

Bonafede+14

Remnant radio galaxies

Remnant radio galaxies

LOW FREQUENCY

to detect the oldest populations of emitting particles

HIGH SENSITIVITY

to detect low surface brightness emission

UV-COVERAGE

get high resolution and sensitivity to large scales at the same time

LOFAR discovery of a 700-kpc remnant radio galaxy at low redshift

Brienza+2016, A&A, 585, A29

Brienza+2017,A&A,606, A98

Brienza+2017,A&A,606, A98

110-180 MHz ~35 deg^2

10 hrs int. time 14"x18" resolution rms~0.75 mJy Mahony+2016 sources ~6000

40 hrs int. time 6"x6" resolution rms~35 uJy sources ~24000 Mandal+2019

Brienza+2017,A&A,606, A98

110-180 MHz ~35 deg^2

10 hrs int. time 14"x18" resolution rms~0.75 mJy Mahony+2016 sources ~6000

40 hrs int. time 6"x6" resolution rms~0.35 mJy sources ~24000 Mandal+2019

COMPLEMETARY SELECTION CRITERIA

- STEEP SPECTRAL INDEX
 SPECTRAL CURVATURE
 LOW CORE PROMINENCE
 MORPHOLOGY
 - 23 candídates

5 confirmed with JVLA follow-ups

Brienza+2017,A&A,606, A98

110-180 MHz ~35 deg^2

10 hrs int. time 14"x18" resolution rms~0.75 mJy Mahony+2016 sources ~6000

40 hrs int. time 6"x6" resolution rms~0.35 mJy sources ~24000 Mandal+2019

COMPLEMETARY SELECTION CRITERIA - STEEP SPECTRAL INDEX

- SPECTRAL CURVATURE
- LOW CORE PROMINENCE
- MORPHOLOGY

5 confirmed with JVLA follow-ups

3-10% of extended sources (confirmed also by Mahatma+18)

Monte Carlo simulations of low power radio galaxies Brienza+2017,A&A,606, A98

Simulations based on empirical radio galaxy parameters (z, Qjet, alpha, t_{on}, age, density profile of external gas, geometry, minimum and maximum energy

RADIATIVE EVOLUTION

Synchrotron + Inverse compton (Komissarov & Gubanov 1994+ Tribble1994)

DYNAMICAL EVOLUTION

Luo&Sadler2011 (pressure limiting case) + adiabatic expansion

MOCK CATALOGUES of low power radio galaxies to compare with observed radio catalogues in the Lockman Hole

<15-10% in mock catalogues are ultra-steep spectrum remnants

The LOFAR Two-metre Sky Survey DR1

Shimwell+2019

400 squared degrees ~350,000 sources 6", noise 100uJy/beam

https://lofar-surveys.org

CONCLUSIONS

Remnant radio galaxies seem to represent a small fraction of the radio-loud population even at low frequency and high sensitivity

This implies a rapid luminosity evolution of the plasma

Searches on larger areas of sky are required to confirm this result and to build up larger samples of remnants that allow for a statistical study of their properties

LOFAR is the perfect instrument to start this search and study in view of SKA-LOW and can become even more powerful when combined with data from other new generation instruments such as APERTIF or uGMRT

MIGHTEE 6" @ 1.4 GHz with few uJy/beam RMS can complement what is done with LOFAR in the Southern sky

CONCLUSIONS

Remnant radio galaxies seem to represent a small fraction of the radio-loud population even at low frequency and high sensitivity

-

This implies a rapid luminosity evolution of the plasma

Searches on larger areas of sky are required to confirm this result and to build up larger samples of remnants that allow for a statistical study of their properties

spectral index map 150-1400 MHz

LOFAR is the perfect instrument to start this search and study in view of SKA-LOW and can become even more powerful when combined with data from other new generation instruments such as APERTIF or uGMRT

