First Results from MeerKAT Commissioning Observations

Filippo Maccagni, Paolo Serra, Mpati Ramatsoku, Dane Kleiner, Daniel Molnar @ OAC (INAF)
MeerKATHI group & MeerKAT commissioning team @ SKA-SA
The MeerKAT telescope

- Antennas & Baselines:
 - 64 antennas, 13.5-m diameter
 - Longest baseline 8000 m. + Dense core of baselines < 50 m.
 - $T_{\text{sys/efficiency}} = 22$ K at 1.4 GHz

- Spectral information:
 - Bandwidth: 0.9–1.67 GHz (HI $0<z<0.58$) + UHF + S-band
 - Wideband mode: ~ 20kHz ~ 5 km/s (32K channels)
 - Zoom Mode: 0.1 km/s
MeerKAT: the SKA precursor

- MeerKAT has ~ 2000 baselines
 - Extreme UV-coverage
 - Simultaneous A,B,C,D and E VLA configurations.
 - High sensitivity uniform throughout all angular scales
 - S/N $\sim 10^4 \rightarrow$ SKA regime.

- MeerKAT has small antennas
 - Large F.O.V.
 - Primary beam sensitivity drops only beyond 1 degree.
 - Great to image Fornax A and HI in nearby galaxies
 - Issues with point source calibrators: other bright sources in the field

Image Credit: Disney
The MeerKAT Fornax Survey

- Observe the Fornax Cluster and the group of Fornax A with MeerKAT
 - 900 hours to observe 12 deg²

- Science goals (see Paolo Serra’s Talk)
 - Study the phenomena of gas removal and accretion in galaxies.
 - Sensitivity in neutral hydrogen $N(\text{HI}) \sim 10^{19}$ cm$^{-2}$ at 1 kpc resolution
 - Identify and investigate the neutral hydrogen low column ICM.
 - Sensitivity in neutral hydrogen $N(\text{HI}) \sim 10^{18}$ cm$^{-2}$ at 10 kpc
 - Determine the HI mass function down to $M(\text{HI}) \sim 5 \times 10^5$ M_{\odot}
The Meerkat Fornax Survey

PI: P. Serra (OAC - Italy)
E. de Blok (ASTRON, Kapteyn, UCT), G. Bryan (Columbia), R.-J. Dettmar (Bochum), B. Frank (SARAO), F. Govoni (OAC), G. Józsa (SARAO, Rhodes, Bonn), D. Kleiner (OAC), R. Kraan-Korteweg (UCT), I. Loubser (NWU), F. Maccagni (OAC), D. Molnar (OAC), M. Murgia (OAC), T. Oosterloo (ASTRON, Kapteyn), R. Peletier (Kapteyn), R. Pizzo (ASTRON), M. Ramatsoku (OAC), M. Smith (Cardiff), S. Trager (Kapteyn), van Gorkom (Columbia), M. Verheijen (Kapteyn)

People present at this workshop
Observations in the Fornax Cluster

NGC 1399 & Fornax A
Channels: 4096 - SKARAB4K
Channel width: 209 kHz - 45 km/s
Frequency range: 1400 - 1420 GHz
Integration time: ~ 8 hours

Data reduction — MeerKATHI pipeline
Image Credit: M. Ramatsoku
MeerKATHI

- **MeerKATHI**: end-to-end data reduction pipeline for interferometric observations.
 - Source accessible and easy to change
 - Make use of any best available software, thanks to Stimela [Makhatini et al. 2016]
 - Portable
 - Easy to Install
 - Scalable (working for large data sets in distributed environment)
 - **Will be public**

MeerKATHI group:

- S. Makhathini (RATT), B. Hugo (SARAO/RATT), K. Thorat (RATT), **F. Maccagni (OAC)**, E. de Blok (Kapteyn/ASTRON/UCT), **P. Serra (OAC)**, A. Ramaila (SARAO), **M. Ramatsoku (OAC)**, G. Józsa (SARAO, Rhodes, Bonn), P. Kamphuis (Bochum), O. Smirnov (SARAO/RATT), **D. Kleiner (OAC)**, **D. Molnar (OAC)**
NGC 1399

Noise = 30 μJy

S_{peak} (NGC1399) = 30 mJy

S_{peak} (MRC0336-355) = 480 mJy

S (MRC0336-355) / N ~ 1.3 x 104
NGC 1399
NGC 1399: MeerKAT vs VLA

- Diffuse emission easily picked up.
- New insights about the evolution history of the AGN in NGC1399?
- More point sources detected in the field
MeerKAT spectral line data

- NGC 1427A: giant neutral hydrogen (HI) disk in a tidal interaction [Lee-Waddell et al. 2017]

- Yellow: HI detected by ATCA
 - Beam: 86’’x56’’
 - Lowest contour: $5 \times 10^{19} \text{ cm}^{-2}$

- Red: HI detected by MeerKAT
 - Beam: 32’’x 25’’
 - Lowest contour: $4 \times 10^{19} \text{ cm}^{-2}$

- MeerKAT observation indicate a tidal interaction rather than ram pressure stripping, as previously hinted by ATCA.
Fornax A

Noise = 40 µJy

$S_{\text{peak}} (\text{Fornax A}) = 116 \text{ mJy}$

Most of flux in the LOBES
Fornax A
Fornax A: MeerKAT vs VLA

- **MeerKAT** [Maccagni et al. in prep.]
- **VLA** [Fomalont et al. 1989]

- Much more detail in the lobes
- No more Y-shaped sources
- Good imaging of sources around Fornax A, and behind the lobes.
Fornax A: MeerKAT vs VLA

- **MeerKAT** [Maccagni et al. in prep.]
- **VLA** [Fomalont et al. 1989]

- Much more detail in the lobes
- No more Y-shaped sources
- Need of DDC for some sources
Fornax A: MeerKAT vs VLA

- **MeerKAT** [Maccagni et al. in prep.]
- **VLA** [Fomalont et al. 1989]

- Good imaging of sources around Fornax A, and behind the lobes.
- The full information is contained in the spectral line data cube.
The goal of the MFS is to detect low column density HI in the Fornax cluster.

- **Red**: 1.4 GHz continuum
- **Background**: FDS survey, r-filter [Venhola et al. 2017].
- **Cyan**: HI detections from MeerKAT observation (1.40-1.41 GHz).
Commissioning Observations: Circinus

- Closest (4 Mpc) spiral galaxy with a Seyfert 2 nucleus
- $M_* = 9.5 \times 10^{10} M_{\text{sun}}$
- $M (\text{HI}) = 9 \times 10^9 M_{\text{sun}}$
- $D (\text{HI}) = 70''$
- MeerKAT 1.4 GHz continuum

Image Credit: J. Josza

ATCA [Elmouttie et al. 1998]
Circinus: spectral line data

Credit: Thorat, Josza
Commissioning Observations: Circinus

Credit: Thorat, Josza
Conclusions

- MeerKAT observations can be reduced via an automated pipeline.
- MeerKAT commissioning observations show promising results:
 - Radio continuum imaging.
 - Wide f.o.v. at high resolution and dynamic range (LOFAR at 1.4 GHz)
 - Spectral line observations.
 - High resolution (10") observations of nearby HI rich radio galaxies.
- MeerKAT will change our view of the radio sky.