GALAXY CLUSTERS AND THE COSMIC WEB WITH

SKA & ATHENA

F. Vazza (Università di Bologna, Universität Hamburg, IRA-INAF)

THE COSMIC WEB & MAGNETOGENESIS

(FV, et al. 2017 CQG)

- **ENZO-MHD** simulations on the grid
- Primordial vs Astrophysical scenarios (25 in total)
- ~µG fields within halos, very different expectations in filaments and cluster outskirts.
- many (challenging) observational probes to test
- advanced computer simulations to put theories to the test and assist radio surveys (+ others)

(see also Donnert+2008, Cho+14,Katz+2018)

THE COSMIC WEB AND COSMIC SHOCKS

Vazza & Gheller for #Athena Nugget 26

THE COSMIC WEB IN THE <u>RADIO</u> WINDOW

(FV, Ferrari, Bonafede+ 2015 A&A) Expected emission from the cosmic web: faint (<1 μ Jy/arcsec² at 100 Mhz), extended (~0.1-1°) and flat spectrum (I(ν)~ ν -1) $P_{WHIM} \simeq \frac{5 \, mJy}{deg^2} \nu_{100}^{-1} \frac{B_{\mu G}^2}{0.05^2} \frac{\xi_e}{10^{-3}}$ log10 (Jy/arcsec²) at 40Mhz

-16 -14 -12 -11 -9.3 -8.1 -7	-6
------------------------------	----

THE COSMIC WEB IN THE <u>RADIO</u> WINDOW

(FV, Ferrari, Bonafede+ 2015 A&A)

-7

-6

-8.1

Expected emission from the cosmic web:

faint (<1 μ Jy/arcsec² at 100 Mhz), extended (~0.1-1°) and flat spectrum (I(ν)~ ν -1)

-16

-14

-12

-11

-9.3

THE COSMIC WEB IN THE <u>RADIO</u> WINDOW

(FV, Ferrari, Bonafede+ 2015 A&A)

-7

-6

-8.1

Expected emission from the cosmic web:

faint (<1 μ Jy/arcsec² at 100 Mhz), extended (~0.1-1°) and flat spectrum (I(ν)~ ν -1)

-16

-14

-12

-11

-9.3

THE RADIO COSMIC WEB: SKA-LOW (& LOW FREQUENCIES)

The tip of the iceberg of filaments may be visible with SKA1-LOW surveys (~13µJy/beam) The spine of the cosmic web may become detectable with ~10³ s integrations(~0.22µJy/beam) Confusion noise is the limiting factor, SKA1-MID surveys can help removing sources.

(see also Brown 2011)

ATHENA/XIFU ("core")

0.8 - 1.2 keV assuming <u>1 Megasecond</u>

FOV=5'x5' A=9947 cm²

 $Bg = 2900 \text{ cnts/Ms/arcmin}^2, nH=2 10^{20} \text{ cm}^2$

(FV, Ettori, Roncarelli, Angelinelli, Gheller+ to be sub.)

SKA-LOW ("Bmax=45km")

v~260 MHz assuming a <u>2yr survey</u>

beam= 10", confusion noise: $\sigma \sim 20 \mu Jy/beam$

no gal.foreground, no galaxy contribution

1 198-05

6.478-05

(FV, Ettori, Roncarelli, Angelinelli, Gheller+ to be sub.)

Athena-SKA White Book.

 At ~R100 in galaxy clusters there is ~2-3% changes of "double detection"

 How to best invest a 1Ms observation with Athena's XIFU (~2031), based on SKA (~2026) detections?

- Can we detect the **WHIM** *in emission* in these objects? What science can we do with this?

Athena-SKA White Book.

(FV, Ettori, Roncarelli, Angelinelli, Gheller+ to be sub.)

 At ~R100 in galaxy clusters there is ~2-3% changes of "double detection"

 How to best invest a 1Ms observation with Athena's XIFU (~2031), based on SKA (~2026) detections?

- Can we detect the **WHIM** *in emission* in these objects? What science can we do with this? (FV, Ettori, Roncarelli, Angelinelli, Gheller+ to be sub.)

Athena-SKA White Book.

"Doubly detectable" regions are found in

• a crowded environment

In typically **pre-merger** galaxy clusters with:

- >3 10^{14} M₀ masses and
- $d_{3D} > 2R_{100}$ separations.

The gas there is compressed up to ~ICM values, but is entering clusters for the first time (*boosted WHIM*!)

post-merge

(FV, Ettori, Roncarelli, Angelinelli, Gheller+ to be sub.)

THE "BOOSTED" WHIM IN PRE-MERGER CLUSTERS

(FV, Ettori, Roncarelli, Angelinelli, Gheller+ to be sub.)

(Dominguez-Fernandez, FV, Bruggen & Brunetti to be sub.)

(Roncarelli, Gaspari, Ettori+ 2018 MNRAS)

What can XIFU do in cluster bridges?

(see also Cassano et al., SKA-Athena Synergy White Paper)

(FV, Ettori, Roncarelli, Angelinelli, Gheller+ to be sub.)

Simulated 1Ms observation with XIFU on a \sim 5' patch visible by both instruments

What will Athena and SKA teach us about intracluster bridges?

(FV, Ettori, Roncarelli, Angelinelli, Gheller+ to be sub.)

Gas velocity dispersion and thermodynamic parameters well reconstructed with a 1Ms integration. Potentially a new method to estimate shock strength and acceleration efficiency in cluster outskirts(?)

THE COSMIC WEB IN THE <u>RADIO</u> WINDOW : LOFAR-LBA/HBA

0.0025

(FV, Ferrari, Bonafede+ 2015 A&A)

LOFAR HBA should be (already) able to detect emission in **intracluster filaments/bridges**

These shocks should be weaker than accretion ones (M~5) and **transient**

THE COSMIC WEB IN THE <u>RADIO</u> WINDOW : LOFAR-LBA/HBA

-2.3

-3

-17

-5.6

-4

-1.7

-1.3

-0.87

-0.54

-0.26

0.0025

(FV, Ferrari, Bonafede+ 2015 A&A)

THE COSMIC WEB IN LARGE SURVEYS: A NEEDLE IN A HAYSTACK?

Mock ASKAP - EMU observation (FOV=5°, res=10")

(Hodgson PhD Thesis + Johnston-Hollitt, McKinley, FV)

(see also Vacca+2018 for SRT mock observations)

COSMODEEP: A FAST, MACHINE LEARNING ALGORITHM TO DETECT DIFFUSE EMISSION

COSMODEEP: A FAST, MACHINE LEARNING ALGORITHM TO DETECT DIFFUSE EMISSION (Gheller, FV, Bonafede 2018 MNRAS)

Fully First Convolutional First Pooling Second Second Output Convolutional Pooling layer Connected Input images layer layer layer laver layer x 1024 1C 1C🔨 x 32 1F 10 1C1C 1C 1C 1C trained on 10,000 mock images 1C1C1C10 1C 10 1C~0.1s/image (2000 x 2000 pixels images) ~90% correct identification down ~1\sigma_{rms} More performing than PyBDSF for $<3\sigma_{rms}$ 1C(of course, *idealized setup*) 10[°] ASKAP 0 0 10⁴ class 1C/0F 10³ Npixels class 1F/0C 10^{2} $\ldots r \ge R_{100}$ 10^{1} $-r < R_{100}$ 0F 10 10⁻¹² 10⁻⁵ 10⁻¹⁰ 10⁻⁶ 10⁻¹¹ 10^{-9} 10⁻⁷ 10⁻⁸ 10⁻⁴ 10^{-3}

[ly/arcsec²]

10

DETECTING INTRACLUSTER FILAMENTS WITH FARADAY ROTATION

The **SKA-MID** will probe RM in a critical regime to distinguish primordial from astrophysical models ($\sim 1-10 \text{ rad/m}^2$)

however, having the contamination from *RM* intrinsic to sources ($\sigma_{RM} \sim 6-12$ rad/m²) under control will be crucial.

CONCLUSIONS

- The cosmic web: likely the solution to the riddle of **missing baryons** and **magnetogenesis**
- Low-frequency radio observations give us the best chance to image the cosmic web
- Double detections of cluster bridges, guided by SKA detections, will give ATHENA the change of studying the WHIM in emission and explore extreme plasma conditions

CONCLUSIONS

- The cosmic web: likely the solution to the riddle of **missing baryons** and **magnetogenesis**
- Low-frequency radio observations are best to image the cosmic web, much more than X-ray
- Double detections of cluster bridges, guided by SKA detections, will give ATHENA the change of studying the WHIM in emission and explore extreme plasma conditions

