

The II National Workshop of SKA science and technology

Athena and SKA synergy: AGN physics

Institute for Space Astrophysics and Planetology Istituto di Astrofisica e Planetologia Spaziali

ATHENA.

The Advanced Telescope for High Energy Astrophysics: Scientific Activities in the Study Phase

Launch uncertain but currently expected ~2030/31

see Paul Nandra contribution to the 2018 Athena meeting

The Athena Observatory

Athena: a revolutionary observatory

Athena has vastly improved capabilities compared to current or planned facilities, and will provide **transformational** science on virtually all areas of astrophysics

THE SKA – ATHENA SYNERGY ON AGN

Delvecchio et al. (2018)

 \rightarrow Evolution of accretion/ejection activity from low to high z

AGN PHYSICS and FEEDBACK MAIN PLAYERs:

Maiolino et al. 2017 - Image credit: ESO / M. Kornmesser

Accretion disc
Wind
Jet
Star-formation

 \rightarrow Radio and X-rays emitters!

OPEN QUESTIONS

- How are jets and winds formed?
- How are the jet and the wind connected to the accretion flow?
- Do accreting objects share the same accretion/ejection physics?
- Which is the activity duty cycle in AGN?
- How is the jet and wind feedback acting in galaxies?

Shang et al. (2011)

ONE of THE DOMINANT SKA POPULATION:

RADIO FAINT AGN

SKA POPULATION: RADIO FAINT AGN

Giroletti & Panessa 2009, Bontempi et al. 2012, Panessa & Giroletti 2013, Baldi et al. 2018, Panessa et al. submitted

The SKA-Athena synergy on LLAGN

courtesy of Hernandez-Garcia

THE SKA – ATHENA SYNERGY ON AGN

Explore SEDs of AGN from a very large range of Eddington ratios → test accretion regime transitions and jet production

AGN and XRBs accretion/ejection physics

Fender & Belloni 2012

JET DEPENDENCE on SPIN

Jet energy can come from the rotational energy of a black hole Blandford & Znajek (1977)

- ✓ In X-ray binaries moderate or no convincing correlation between the jet and a spin (Miller et al. 2009, Fender et al. 2010, Narayan et al. 2011)
- the spin paradigm for jet power is still awaiting broad observational support

 \rightarrow statistically relevant correlation to probe the spin paradigm

Athena.

 \rightarrow outflows with a wide range of velocities and ionization parameter

 \rightarrow derive physical parameters to contrain outflow models

SKA - Very Long Baseline Inteferometry!!!

JET AND OUTFLOW COEXISTENCE

Athena:

→ detect a large number of outflows in jetted AGN, determining their physical parameters

→ determine the occurrence of radio jets and their properties over a wide range of powers, morphologies and spatial scales

estimate the outflow and jet kinetic power \rightarrow feedback

AGN RESTARTING ACTIVITY

 \rightarrow discover a large number of new restarting activity sources (now rare!)

 \rightarrow estimate the present epoch activity of the source

estimate the duty cycle of activity in galaxies

Molina et al. 2014, 2015, Bassani et al. 2016, Hernandez-Garcia et al. 2017, Ursini et al. 2018, Bruni et al. submitted

THE REACTIVATING NUCLEUS OF PBC J2333.9-2343 from giant radio galaxy to blazar!

X-RAY BINARIES in OUTBURST (weeks time scales)

SKA1 Mid Layout

SKA1 Low will consist of 130,000 log-periodic dipole antennas, organised in 512 aperture array stations of 256 antennas each, in the Boolardy site in Western Australia. Around 50% of the stations are within 1 Km diameter core; the remaining ones are organised in clusters of 6 stations on three modifed spiral arms. The maximum baseline is 65 Km.

SKA1-Mid will consist of 133 15m SKA dishes and 64 13.5m Meerkat dishes in the Karoo site in South Africa. The core comprises around 50% of the dishes, randomy distributed within 2 Km. There are 3 logarithmic spiral arms with a maximum baseline of 150 Km.

Band Definitions

(1): Part of the design baseline and deployed as a top priority

(2): Deployed as an upgrade path (to be confirmed)

Telescope	Band	Frequency Range (MHz)	Available Bandwidth (MHz)	Notes (MHz)
SKA1-LOW	N/A	50 – 350	300	(1)
SKA1-MID	1	350 – 1050	700	(1)
	2	950 – 1760	810	(1)
	3	1650 – 3050	1400	(2)
	4	2800 – 5180	2380	(2)
	5a	4600 - 8500	2 x 2500	(1)
	5b	8300 - 15300	2 x 2500	(1)
	5c	15000 – 24000	2 x 2500	(2)
	Α	1600 – 5200	2500	(2)
	В	4600 - 24000	2 X 2500	(2)

THE DOMINANT SKA POPULATION: RADIO FAINT AGN

- SKA 1_mid (2019): survey between 1-3 GHz (100 km baseline)
 - ✓ In 1hr →1 microJy with 100 mas
 - ✓ 10³ more LLAGN

Powerful tool to search for weak AGN

Probe the kpc to pc scale properties of jets and AGN cores

- ✓ Study of the jet launching and acceleration zone in nearby AGN
- Systematic measurement of the brightness temperatures, slopes and morphologies in complete samples of radio sources
- ✓ Investigate flaring coronal and jet activity and its correlation with X-ray activity

Predicted design & timeline for SKA2

The second phase of the SKA (SKA2) will follow after construction and deployment of SKA1.

The performance of the second phase of the SKA is likely to include:

- 4 x SKA1 sensitivity in the frequency range of 50 350 MHz
- 10 x SKA1 sensitivity in the frequency range of 350 MHz 24 GHz (including deployment of all five frequency bands)
- 50% of the "natural" sensitivity of the facility over a wide range of beam size
- 20 x SKA1 Field-of-View in the frequency range of 350 MHz 1.5 GHz
- 20 x SKA1 maximum angular resolution in the frequency range of 50 MHz 24 GHz

ANTICIPATED SKA1 HPC RE QUIREMENTS – May 2018

∨ _{min} (GHz)	v₀ (GHz)	∨ _{max} (GHz)	Sub- band	Band	N _{Ateam}	N _{Source}	S _{Max} (Jy)	S _{Min} (Jy)	N _{SelfCal} / N' _{SelfCal}	N _{Maj} / N' _{Maj}	Nipatch
0.050	0.060	0.069	Low sb1		19	36820	68	14m	6/1	3/1	336
0.069	0.082	0.096	Low sb2		15	35270	32	3.9m	6/1	3/1	180
0.096	0.114	0.132	Low sb3		12	28390	14	1.4m	5/1	3/1	93
0.132	0.158	0.183	Low sb4		10	24760	6.3	0.7m	5/1	3/1	48
0.183	0.218	0.253	Low sb5		9	17050	2.8	0.5m	5/1	3/1	25
0.253	0.302	0.350	Low sb6		8	9602	1.3	0.5m	5/1	2/1	20
0.35	0.41	0.48	Mid sb1	B1	8	29860	2.0	0.3m	6/1	3/1	36
0.48	0.56	0.65	Mid sb2	B1	5	25140	0.9	0.1m	6/1	3/1	20
0.65	0.77	0.89	Mid sb3	B1	3	21530	0.4	60µ	5/1	3/1	20
0.89	1.05	1.21	Mid sb4	B2	2	18770	0.2	20μ	5/1	3/1	20
1.21	1.43	1.65	Mid sb5	B2	1	16290	90m	15µ	5/1	3/1	20
1.65	1.95	2.25	Mid sb6		0	11430	50m	9μ	5/1	3/1	20
2.25	2.66	3.07	Mid sb7		0	6660	31m	7μ	5/1	3/1	20
3.07	3.63	4.18	Mid sb8		0	3770	20m	6μ	5/1	3/1	20
4.18	4.94	5.70	Mid sb9	B5a	0	2087	13m	5μ	5/1	2/1	20
5.70	6.74	7.78	Mid sb10	B5a	0	1117	8m	4μ	4/1	2/1	20
7.78	9.19	10.61	Mid sb11	B5b	0	582	5m	4μ	4/1	2/1	20
10.61	12.53	14.46	Mid sb12	B5b	0	293	3m	3μ	4/1	2/1	20

∨ _{min} (GHz)	vc (GHz)	∨ _{max} (GHz)	Sub-band	Band	σc (μJ y/Bm)	θ' _{min} (")	θ _{min} (")	θ _{max} (")	θ' _{max} (")
0.050	0.060	0.069	Low sb1		163	16.4	23.5	1175	3290
0.069	0.082	0.096	Low sb2		47	11.9	17.0	850	2379
0.096	0.114	0.132	Low sb3		26	8.6	12.3	614	1719
0.132	0.158	0.183	Low sb4		18	6.2	8.9	444	1244
0.183	0.218	0.253	Low sb5		14	4.5	6.4	321	899
0.253	0.302	0.350	Low sb6		11	3.3	4.6	232	650
0.35	0.41	0.48	Mid sb1	B1	16.8	1.015	2.031	270.8	541.6
0.48	0.56	0.65	Mid sb2	B1	8.1	0.745	1.489	198.6	397.2
0.65	0.77	0.89	Mid sb3	B1	4.4	0.546	1.092	145.6	291.2
0.89	1.05	1.21	Mid sb4	B2	2.7	0.400	0.801	106.8	213.5
1.21	1.43	1.65	Mid sb5	B2	2.0	0.294	0.587	78.3	156.6
1.65	1.95	2.25	Mid sb6		1.6	0.215	0.431	57.4	114.9
2.25	2.66	3.07	Mid sb7		1.4	0.158	0.316	42.1	84.2
3.07	3.63	4.18	Mid sb8		1.6	0.116	0.232	30.9	61.8
4.18	4.94	5.70	Mid sb9	B5a	1.4	0.085	0.170	22.7	45.3
5.70	6.74	7.78	Mid sb10	B5a	1.3	0.062	0.125	16.6	33.2
7.78	9.19	10.61	Mid sb11	B5b	1.2	0.046	0.091	12.2	24.4
10.61	12.53	14.46	Mid sb12	B5b	1.2	0.034	0.067	8.9	17.9

JET-DISK COUPLING in AGN

MONITORING VARIABILITY

Panessa et al. in prep

X-ray and radio simultaneous monitoring at more frequencies, at different time scales, at higher sensitivities to constrain physical models:
✓ disk instabilities propagate into the jet base
✓ coronal mass ejections
✓ comparison to XRBs

-2 0 2 4 6 8 10 Rel. R.A. (mas)

VLBA/7mm

3C 120

JCMT/1.3-0.85mm

TRACING RADIATION WINDS AND JET-DRIVEN OUTFLOWS WITH HI ABSORPTION

Tracer of the gas in the inner parts of the galaxy down to low-luminosity radio AGN (10 mJy at high z)

Tracer of circumnuclear disks Infalling gas \rightarrow feeding *Outflowing gas* \rightarrow *feedback*

The combined spatial and spectral response of the X-IFU on Athena+ will allow to map the velocity field of the hot gas with uncertainties of ~20-30 km/s on scales down to few kpc in 40-50 nearby AGN/ULIRG/starburst galaxies

Project Status and Upcoming Milestones

- July 2015: Industrial Phase A study kickoff
- June 2016: Mission Consolidation Review (design choice)
- July 2016: Release of Instrument AO
- Dec 2017: End of Phase A
- Phase B1 2018-2019
- Mission Adoption ~2020 (Launch 2028)

Athena Mirror Progress

Optics requirements:

- 5" HEW on-axis, <10" @ 15' off-axis
- >1.4 m² effective area @ 1 keV
- Silicon Pore optics status:
 - Best HEW performance (20m):
 - 12.8" HEW for 100% of area
 - 8.0" HEW for 70% area
 - 5.0" HEW for 10% of area
 - Change to 12m focal length: progressing rapidly, performance at MFR (and MAR) critical
 - <u>Latest</u> 12m results ~9" over 70% area, 5.4" HEW over 15%
 - Other key issues: Rib pitch, Coatings, Stray Light baffling

Willingale et al 2013, arXiV: 1308.6785 Badaz et al. 2017, Proc. SPIE

Key issues becoming better understood?

ACCRETION/EJECTION COUPLING

Hannikainen et al. (1998), Corbel et al. (2003), Gallo, Fender & Pooley (2003)

ACCRETION/EJECTION COUPLING

Correlation from low luminosity AGN to bright AGN → hypothesis: RQ AGN lie on the same relation as Coronally Active stars and radio emission originates from coronal mass ejections

THE SKA – ATHENA SYNERGY ON AGN

Figure 7: Emissions of three PL distributions. The vertical lines designate the turn-over frequency

RADIO from synchrotron emission of power-law (PL) electrons in coronal models:

If X-rays are by comptonization from PL electrons

 \rightarrow same radio and X-ray spectral slope