ITPM ADU 1.5:

LFAA and 'general purpose' applications

Francesco Schillirò INAF-Osservatorio Astrofisico di Catania Email : fschilliro@oact.inaf.it

LFAA: Tile Processor Module

Tile: 16 Antennas, 2 Pol, 32 Channels.

Tile Processor Module in AAVS1

Credit: ICRAR/Curtin University, Western Australia

ITPM functionality

- Convert analogue optical to electrical signals
- Amplify and bandpass filter ready for digitisation;
- Digitise at 800MS/s and pass to digital processing;
- Manage the clock distribution and the memory storage;
- Digitally process;
- Packetize Data for 100 Gbit/sec data processing;
- Control and monitoring processor data

ITPM-ADU Generations

ADU technical evolution

The ADU board has maintained the same component list and board architecture toward the successive release, only minor changes has been done:

- ADU 1.0 first release, main issue, input DC-DC supply under dimensioned and some component layout optimization needed for the soldering process (2013-2014)
- ADU 1.1 doubled the first DC-DC, corrected some minor bugs, 32 data channel acquisition and characterization done, product complete and stable (2015)
- ADU 1.2 the same BOM as 1.1 just some layout minor changes for ADC sampling clock equalization. ADU 1.1 and TPM-ADU 1.2 are firmware and software compatibles (2016)
- ADU 1.2 released and engineered as PAF digital processing solution (2017)
- ADU 1.5, released specification with the migration of the previous component list to the equivalent newer one, to reduce absorbed power 20% and cost. The board architecture, in terms of component placement, clock distribution and board structure will share the same specification of the ADU 1.0 to 1.2 (2018)
- ADU 1.6 as 1.5 minor upgrade (2019).
- ADU 2.0 with RFSoC design solution for PAF and Mid Frequency Array (2019).

ITPM ADU Versions 1.0 and 1.1

ITPM ADU 1.0 financed by Tecno INAF Funds:

- Designed Architecture
- Demonstrated feasibility and met most of the SKA Requirements

ITPM ADU 1.1 Version

Has been designed in order to optimize

- Power dissipation by introducing a new version of AD9680 ADC;
- Spurious Free Dynamic Range by mitigation of spurious frequencies distribution circuitry;

ITPM ADU 1.1 final version for AAVS1 and SAD have been ordered by Oxford University and Cambridge University for SKA-MFAA prototypes.

ITPM 1.1 is the reference board for SKA1 Requirement for digital equipment.

ITPM-ADU SPECS

Indicative Spec for SKA

Results for ITPM 1.0 (good candidates to be upgrated as 'Requirements'

SPEC Required							
	ADC Perf. Parameters	ADU Board#1 (with ADA)	ADU Board#2 (without ADA)				
>40dB	Signal to Noise Ratio referenced to Full Scale [dBFS]	≥ 49.19	≥ 49.33				
+/- 1,5 dB	Gain Flatness [dBFS]	≤ ±0.3573	≤ ±0.343				
	2 nd -order Harmonic Distortion [dBc]	≤ -67.24 (3 points around 231.7 MHz)	≤ -67.74				
	3 rd -order Harmonic Distortion [dBc]	≤ -66.53 (3 points around 231.7 MHz)	≤ -68.56				
<-40 dB	Worst Other Spur [dBc]	≤ -67.03	≤ -66.83				
>40 dB	Spurious Free Dynamic Range [dBc]	≥ 66.53	≥ 66.83				
> 6.5 bits	ENOB [bits]	≥ 7.876	≥ 7.896				
-50 dB	Cross-Talk [dBc]	≤ -65.69	≤ -61				
	IP3 [dB] (F1=184.7 MHz; F2=187.5 MHz)	29.55	32.2				
	IP2 [dB] (F1=184.7 MHz; F2=187.5 MHz)	66.3	77.5				
	Fs: 700 MSPS BW: 375 – 650 MHz						
	ADC Perf. Parameters	ADU Board#1 (with ADA)	ADU Board#2 (without ADA)				
	Signal to Noise Ratio referenced to Full Scale [dBFS]	≥ 48.88*	≥ 49.32				
	Gain Flatness [dBFS]	≤ ±0.6252	≤ ±1.356				
	2 nd -order Harmonic Distortion [dBc]	≤ -65.77*	≤ -59.9				
	3 rd -order Harmonic Distortion [dBc]	≤ -60.78*	≤ -65.64				
	Worst Other Spur [dBc]	≤ -64.16*	≤ -63.23				
	Spurious Free Dynamic Range [dBc]	≥ 60.78*	≥ 59.9				
	ENOB [bits]	≥ 7.788*	≥ 7.886				
	Cross-Talk [dBc]	≤ -70.58	≤ -70.39				
	IP3 [dB] (F1=500.1 MHz; F2=503.2 MHz)	26	24.4				
	IP2 [dB] (F1=500.1 MHz; F2=503.2 MHz)	64	58.3				

ITPM-ADU Version 1.2: AAVS1

ITPM-ADU 1.2 final engineered version for AAVS1 and SAD

- 35 ADU Board produced (25 in Italy, 10 in The Nederlands);
- Designed lines engineered for mass production;
- Test benches produced both for prototypes as for mass production;
- Optimized design for Housing and Deployment

ITPM-ADU Version 1.2: AAVS1

Credit: ICRAR/Curtin University, Western Australia

- ITPM-ADU 1.2 connected to one "EDA" MWA station (16 Beamformed Tiles)
- ITPM-ADU 1.2 is one of the candidate FPGA-based board for use on ALPACA project (PAF at Arecibo Observatory)
- ITPM-ADU 1.2 CASPERized in august 2018 (now in progress, thanks to Naldi, Mattana et al.) Exploring the Universe with the world's largest radio telescope

ITPM ADU Design: ADC

pe

14-Bit, 1300 MSPS/625 MSPS, JESD204B, **Dual Analog-to-Digital Converter**

AD9695 **Data Sheet**

FEATURES

JESD204B (Subclass 1) coded serial digital outputs Lane rates up to 16 Gbps

1.6 W total power at 1300 MSPS

800 mW per ADC channel

SNR = 65.6 dBFS at 172 MHz (1.59 V p-p input range) SFDR = 78 dBFS at 172.3 MHz (1.59 V p-p input range)

- -153.9 dBFS/Hz (1.59 V p-p input range)
- -155.6 dBFS/Hz (2.04 V p-p input range)

0.95 V, 1.8 V, and 2.5 V supply operation

No missing codes

Internal ADC voltage reference

Flexible input range

1.36 V p-p to 2.04 V p-p (1.59 V p-p typical)

2 GHz usable analog input full power bandwidth >95 dB channel isolation/crosstalk

Amplitude detect bits for efficient AGC implementation 2 integrated digital downconverters per ADC channel 48-bit NCO

Programmable decimation rates

Differential clock input

SPI control

Integer clock divide by 2 and divide by 4 Flexible JESD204B lane configurations On-chip dithering to improve small signal linerarity

APPLICATIONS

Diversity multiband, multimode digital receivers 3G/4G, TD-SCDMA, WCDMA, GSM, LTE

General-purpose software radios

Ultrawideband satellite receiver

Instrumentation

Oscilloscopes

Spectrum analyzers Network analyzers

Integrated RF test solutions

Electronic support measures, electronic counter measures,

and electronic counter-counter measures

High speed data acquisition systems

DOCSIS 3.0 CMTS upstream receive paths

Hybrid fiber coaxial digital reverse path receivers

Wideband digital predistortion

Characteristi c	Unit	Baseline Specificati on*	Minimum	Typical	Maximum	
Sampling Bandwidth	MHz	300	300	400	500	
ENOB	Bits	8	6	8	12	
Power consumption	W	100	50	100	350	
Channel isolation (for multi- channel ADCs)	dB	100	65	100	120	
Max input RF power	dBm	-19	-40	-19	0	
DSP		No	NO	YES	YES	
Capabilityolor	ing the Ur	iverse wit	h the work	d's largest	radio teles	sco
DNL	Bit	+/- 0.5 LSB	+/- 0.5 LSB	+/- 0.5 LSB	+/- 0.5 LSB	
INL	Bit	+/- 1 LSB	+/- 1 LSB	+/- 1 LSB	+/- 1 LSB	
CNID	ID 50	6.5		C.	400	

TPM Devices: Xilinx Ultrascale

FEATURES OVERVIEW

16nm low power FinFET+ process technology from TSMC

Industry leading process from the #1 service foundry delivers a step function increase in performance-per-watt

- · Over 2X performance-per-watt over Kintex-7 FPGAs
- . The same scalable architecture and tools from Kintex UltraScale FPGAs

E XILINX ALL PROGRAMMABLET

UltraRAM™ for deep memory buffering

Up to 36Mb for SRAM device integration

· For deep packet and video buffering

- . 8X capacity-per-block vs. traditional embedded memory
- · Deep-sleep power modes

SmartConnect technology

System-wide interconnect optimization tools and IP

. Matches optimal AXI interconnect to the design

- Automatic interface bridging
- Additional 20-30% advantage in performance-per-watt

Massive I/O bandwidth and dramatic latency reduction

50% greater serial bandwidth than Kintex UltraScale devices, and 4X greater than Kintex-7 devices

- 16G and 28G backplane support
- 32.75G chip-to-chip and chip-to-optics support
- . High-Density I/O for greater area and power efficiency per pin

Next-generation routing, ASIC-like clocking, and enhanced fabric

Enabling breakthrough speeds with high utilization

- Smaller area and greater power consistency
- . Up to two speed-grade advantage vs. comparable solutions
- . Efficient CLB use and placement for reduced interconnect delay

Massive memory interface bandwidth

PCI Express* integrated blocks

Next generation DDR and serial memory support

Complete end-to-end solution for multi-100G ports

- DDR4 support of up to 2,666Mb/s

- Support for server-class DIMMs (8X capacity vs. Kintex-7)
- · Hybrid Memory Cube serial memory support of up to 30G

· Gen3 x16 and Gen4 x8 for 100G bandwidth per block

- · Expanded virtualization for data center applications
- · Enhanced tag management for increased buffer space

Integrated 100G Ethernet MAC and 150G Interlaken Cores

ASIC-class cores for breakthrough performance in packet processing

60K-100K system logic cell savings per port

- Up to 90% dynamic power savings vs. soft implementation
- . Built-in RS-FEC (Ethernet MAC) for optics error correction

Enhanced DSP slices for diverse applications

Enabling a massive jump in fixed- and floating-point performance

Up to 6.3 TeraMACs of bandwidth at 891 MHz operation

- Double-precision floating point using 30% fewer resources
- Complex fixed-point arithmetic in half the resources

High-speed memory cascading

Removes key bottlenecks in DSP and packet processing

· Eliminates fabric usage when building deep memories

- Reduces routing congestion
- · Lowers dynamic power consumption

Up to 50% power savings over Kintex-7 devices, and 30% power saving over Kintex UltraScale devices

Static- and dynamic-power optimizations at every level

· Optimal voltage tuning

- · Power-optimized transceivers and block RAM
- . More granular clock gating of logic fabric and block RAM

Kintex Ultrascale 40 nm

Device Resources XCKU035 XCKU040 XCKU060 XCKU075 XCKU100 XCKU115 355.474 Logic Cells 424.200 580,440 756,000 985,440 1.160.880 Block RAM (Mb) 19.0 21.1 38.0 418 59.1 DSP Slices 1.700 1.920 2.760 2 592 4.200 5 520 PCI Express® Blocks 3 4 6 20 32 GTH 16 Gh/s Transceivers 16 52 64 I/O Pins 520 520 624 728 832 I/O Voltage 1.0V - 3.3V 1.0V - 3.3V

Kintex Ultrascale+ 16 nm

Goal: reduce power consumption

Peripheral \ Board Release	R 1.2	R 1.5	R1.5 option
Digital IC			
CPLD, Eth, Flash,	3	2	
СРИ	0,5	0	
FPGA, x2	55	52,0	40
DDR memories (*1)	3,4	5	
ANALOG (800 Mhz)			
PLL, CLKBuff, 10G PII	3,6	3,6	1,6
ADC	52,6	25,1	
VGA		7,128	
FRONT END	16,7	10,6	
Power distribution efficiency:			
Digital:	90,25%		
Analog (150 mV linear drop):	82,1%		
TOTAL DIGIT IC, Watt:	68,6	65,4	52,1
TOTAL ANALOG IC, Watt:	68,4	43,6	41,2
Front End	18,5	11,7	11,7
TOTAL Supply, Watt:	155,5	120,7	105,0

Part Number	
XCKU9P-1FFVE900E	
XCKU9P-L1FFVE900I	
XCKU9P-L2FFVE900E	

22% or 27% FPGA power consumption reduction

Power is estimated with maximum toggle rate, as simulating worse functional conditions

52% ADC power consumption reduction

GOAL: less than 70 W (only ADU)

Total power consumption reduction 22% or 32%

ITPM ADU Version 1.5

ITPM-ADU 1.5 is the reference design for LFAA Critical Design Review, and (one of) the candidates to be the digital platform for SKA1 –Low:

It's foreseen for this version:

- New ADCs AD9695 low power Devices in order to minimize power dissipation;
- New DDR4 high-speed access and low power than DDR3 memories, 2Gbyte per FPGA;
- 16 nm Kintex Ultrascale+ FPGA.
- 100 Gb/sec digital data flow;
- Full Engineered ITPM Version for mass production

LFAA Rack design and Electronics Housing

Figure 2 LFAA Cabinet power distribution scheme

RF Performances

SubRack Thermal Analysys

Exploring the Universe with the world's largest radio telescope

ITPM and SAD

Sardinia Array Demonstrator (SAD)

Fig 1. Preliminary study of array configuration, engineering and on site deployment

ITPM further Applications: SST

Medicina Northern Cross radiotelescope

Application in SST (Space Surveillance and Tracking) for the monitoring of orbiting objects

Total collecting area = 28000 m² N. of dipoles on the focal lines = 5632Frequency = 16 MHz @ 408 MHz

- Part of the Northern Cross radiotelescope has been refurbished within the SST program
- 64 new receivers have been installed
- A new multibeam on iTPM is under design/development Exploring the Universe with the work's largest radio telescope

ITPM for PHAROS 2

PHAROS2: C-band (4-8 GHz) cryogenically cooled low noise Phased Array Feed (PAF) demonstrator

- SKA Advanced Instrumentation Program on PAF
- To be installed in Lovell Radiotelescope (UK)

<u>Digital Back end</u>

- ADU board for digital acquisition and signal processing
- Frequency domain beamformer
- 4 independent single-pol. beams with ≈275 MHz bandwidth across 375-650 MHz
- 24 active elements of an array of Vivaldi antennas
- Same PFB architecture as in LFAA but
 - Different sampling rate: 700 MS/s
 - Simplified beamformer architecture
 - Include correlations with a calibration signal?

A. Navarrini et al. (2018), "Design of PHAROS2 Phased Array Feed", 2nd URSI AT-RASC, Gran Canaria

ITPM for PAF: RFSoC

Featuring 8x8 RF-Analog and Integrated SD-FEC Cores

- 8x 4GSPS 12-bit ADCs
- •8x 6.4GSPS 14-bit DACs
- Over 42 Gb/s LDPC FEC Encode System Throughput
- •10Gb/s LDPC FEC Decode Throughput
- Support for custom LDPC Code Construction
- Over 7 Gb/s Turbo Decode System Throughput

ITPM for PAF: RFSoC

Pros

- 1) The most important and sensitive functional blocks integrated
- 2) More robustness in design and functionalities
- 3) Less power consumption;
- 4) Smaller size and more subR integration

Cons

- 1) High costs (at the moment, it depends on Xilinx commercial strategy)
- 2) Feasibility study not ready yet (3D EM analysis, clock distribution, enob, etc.)
- 3) Performances not yet clear;
- 4) Power reduction not so relevant;
- 5) Effort (hr and funds) already invested in LFAA;
- 6) LFAA reference design robust and mature for mass production

CONCLUSION

No sense to change technology NOW for LFAA

Strong interests to explore RFSoC for PAF...

fundraising machine is warming up....

ITPM-ADU further Applications

Aerospace

TLC

Dec, 3, 2018 SKA Italy

HPC Accelerator

ITPM further Applications

Space Debris (Northern Cross)

ITPM People

INAF

- Francesco Schillirò
- Gianni Comoretto
- Giovanni Naldi
- Andrea Mattana
- Monica Alderighi
- Jader Monari
- Federico Perini
- Giuseppe Pupillo
- Marco Poloni
- Simone Rusticelli
- Marco Schiaffino
- Carolina Belli
- Simone Chiarucci
- Alessandro Navarrini
- Andrea Melis
- Raimondo Concu
- Sergio D'Angelo

Sanitas EG

- Sandro Pastore
- Fabio Casini

University of Oxford

- Kris Zarb-Adami
- Riccardo Chiello
- Amin Aminaei

University of Malta

- Alessio Magro
- Andrea De Marco

Campera

- Gabriele Dalle Mura
- Emanuele Zaccaro

ITPM for PHAROS 2

ITPM Project Research and Industries

Oxford

