### Definitive characterization of the ISM in the Local Universe: SKA and other facilities

#### Viviana Casasola

INAF – Istituto di Radioastronomia (Bologna) INAF – Osservatorio Astrofisico di Arcetri (Firenze)

Simone Bianchi, Laura Magrini, Edvige Corbelli
INAF – Osservatorio Astrofisico di Arcetri
DustPedia Team







#### Interstellar medium (ISM) & ISM scaling relations

ISM: primary importance for the formation and evolution of galaxies since it is in the environment from which stars are formed

- ✓ Mass of ISM: gas for ~99% (~74% of H, ~25% of He, ~1% of heavier elements, i.e. 'metals'), dust for ~1%
- Nearby galaxies: Intricate system of correlations between their global properties, called scaling relations
- ✓ Scaling relations: correlations between physical properties, internal physics, formation and evolutionary histories, different galaxy populations
- ✓ In the last years, the number of works on the ISM scaling relations has grown
- ✓ Dust often neglected, sometimes the molecular gas/ metallicity are neglected, ...

#### Sample and data:

- $\checkmark$  436 late-type (T = 1 − 10, Sa − Irregular) DustPedia galaxies (Davies+17)
- ✓ Dust mass (THEMIS dust mass model, Jones+17) [IR data from Herschel]
- ✓ CO and HI (gas mass) data (Casasola+, in prep.) [mm and cm data from radio telescopes (single-dish/interferometer)]
- ✓ Metallicity data (De Vis+18, submitted) through multiple strong-line calibrations

DustPedia <u>sample</u> + DustPedia <u>data</u> + DustPedia <u>ancillary data</u>: "ideal" project to characterize the <u>ISM scaling relations</u> in the <u>Local Universe</u>

Dust and gas components (HI,  $CO \rightarrow H_2$ , HI+ $H_2$ )

Dust and gas components (HI,  $CO \rightarrow H_2$ , HI+ $H_2$ )

Both dust and gas masses are referred to the optical disk  $(r_{25})$ 



Dust and gas components (HI,  $CO \rightarrow H_2$ , HI+ $H_2$ )

Both dust and gas masses are referred to the optical disk  $(r_{25})$ 



Dust and molecular gas are well correlated

Consistent with star formation process

The correlation does not improve assuming a CO  $\rightarrow$  H<sub>2</sub> conversion factor (X<sub>CO</sub>) depending on the metallicity (e.g., Sandstrom+13; Hunt +15; Amorin+16)

Dust and gas components (HI,  $CO \rightarrow H_2$ , HI+ $H_2$ )

Both dust and gas referred to the optical disk  $(r_{25})$ 

 $\log(\mathrm{M_{HI}})$ r25  $[\mathrm{M_{\odot}}]$ 



Dust and atomic gas (21cm-HI) are better correlated than dust and molecular gas

Opposite to what happens at small scale physics

Dust and Gas components (HI,  $CO \rightarrow H_2$ , HI+ $H_2$ )

Dust

 $log(M_d)_{r25} [M_{\odot}]$ 

Both dust and gas referred to the optical disk ( $r_{25}$ )  $\begin{array}{c} 11 \\ \text{O} \\ \text{M} \end{array} \begin{array}{c} 12 \\ \text{Constant X}_{\text{CO}} \text{ (Bolatto+13)} \\ \text{Solution} \\ \text{R} = 0.81 \end{array}$ 

Dust and total gas are well correlated and the correlation is driven by HI in the galaxy disk

Scaling relations tested with a large and homogenous sample and under several assumptions: constant  $X_{CO}$  (Bolatto+13),  $X_{CO}$  depending on O/H (Amorin+16)

#### Dust-to-gas mass ratio (DGR), metallicity, morphology



X<sub>co</sub> depending on Z reproduces the expected decreasing of DGR with T (see, e.g., Draine+07, Rémy-Ruyer+14, Hunt+15, Relano+18)

We characterize DGR at a given T for all gas phases

#### Dust/Tot gas vs. H<sub>2</sub>/HI



#### Dust/Tot gas vs. H<sub>2</sub>/HI



The DGR is reduced for more evolved galaxies, possibly as an effect of differential consumption of dust and gas during astration.

GALAXY EVOLUTION: Science driver of SKA
ALMA, (Herschel → SPICA), DustPedia Project, PRIN SKA ESKAPE-HI

### ISM scaling relations in the Local Universe

### **Conclusions** in SKA perspective

#### in perspective of synergies between SKA and other facilities

- ✓ HI @ 21cm (1.4 GHz): fundamental role to characterize the ISM in the disks of the Local Universe
- ALMA is revealing the molecular gas through several tracers (e.g., CO) at mm  $\lambda$ , telescopes as JVLA and, in future, **SKA** detect the HI gas component
- Our approach is an example of synergy between SKA pathfinder/precursors,
   ALMA (IRAM, Nobeyama), and Herschel, ...
- Once characterized the ISM at z = 0: What happens at z > 0? What happens at the small-scale physics?

SKA + other facilities will surely help us!



Thanks!



### 436 late-type DustPedia galaxies

- √ 50%: interacting galaxies, including pair and group members
- ✓ 12%: low-luminosity AGN ( $L_X$  <  $10^{42}$  erg s<sup>-1</sup>) including Seyferts and LINERs
- ✓ 2%: starbursts