COLLABORATION IN OBSERVING AND FINANCIAL PROGRAMMES Observing with National Radio Facilities

Federica Govoni

Coordinator of Section II (Radio Astronomy) of the Scientific Directorate

V.N. Karazin Kharkiv National University - INAF Bilateral Workshop on Astrophysics

22-23 March 2018 (Roma)

COLLABORATION IN OBSERVING AND FINANCIAL PROGRAMMES Observing with National Radio Facilities

SRT

Gregorian optical configuration Diameter: 64 m Frequency range: 0.3 – 116 GHz Elevation range: 5°-90° Azimuth range: ± 270° Azimuth slewing speed: 51°/min Elevation slewing speed: 30°/min

<u>TIMELINE</u>

June 2012 – October 2013: Techincal commissioning (Bolli et al. 2015)

September 2013: Opening Cerimony

February 2012 - January 2016: Astronomical Validation (Prandoni et al. 2017)

February - August 2016: Early Science Program (accepted proposals: 15)

2017 months of stop due to the refurbishment of active surface (6 months)

2018 re-commissioning

SRT

Spectro-polarimetric Back-end

SARDARA

<u>SA</u>rdinia <u>R</u>oach2-based <u>D</u>igital <u>A</u>rchitecture for <u>R</u>adio <u>A</u>stronomy up to 2500 MHz and 16k-channels, seven beams Receivers

Dual **L-band** (1.3-1.8 GHz) and **P-band** (305-425 MHz) coaxial

K-band multibeam (18-26 GHz)

C-band (5.7-7.7 GHz)

ACTIVE SURFACE

Active Surface System

1008 alluminium panels 1116 actuators

Examples of other telescopes:

- GBT
- Noto
- Tian Ma

Active Surface System Refurbishment

BEAM PATTERN

IMAGING CAPABILITIES Extended Sources, C-BAND 7.24 GHz, 680 MHz of bandwidth

Prandoni et al. (2017)

SPECTROSCOPY

C-BAND 7.24 GHz, 680 MHz of bandwidth

W3(OH)

Omega Nebula

62.5, 7.8, 2.0, 0.5 MHz 1.5, 0.2, 0.05, 0.01 km/s

Prandoni et al. (2017)

PULSARS

C-BAND

PSR name	Nobs	$t_{\rm obs}$	S/N	S_{6000} (mJy)
B0329+54	21	304	124	2.5
B0355+54	6	666	281	5.2
J1852-0635	2	115	65	6.7
B1929+10	3	164	122	4.6
B2020+28	1	510	30	0.7
B2021+51	6	303	244	4.2
J1713+0747	1	1830	22	0.2
B1855+09	1	930	13	0.4
B1937+21	1	630	12	0.2
J2145-0750	2	1365	10	0.1

٥ 0.2

Prandoni et al. (2017)

B2021+51

0.4 0.6

0.8

1

1

Pulse Phase

0

0

0.4 0.6 0.8

Pulse Phase

1

Long period bright pulsars

Milli-sec pulsars

AREAS OF APPLICATION

Single Dish Radio Astronomy & VLBI (star formation, pulsars, galaxies, magnetic fields, ...)

Geodesy

Space science (monitoring of space debris)

Deep Space Network (communication and control of probes in the Solar System)

AREAS OF APPLICATION

Single Dish Radio Astronomy & VLBI (star formation, pulsars, galaxies, magnetic fields, ...)

Geodesy

Space science (monitoring of space debris)

Deep Space Network (communication and control of probes in the Solar System)

SCIENCE

Areas where INAF antennas can play a major role in the next future:

- 1. VLBI science
- 2. Gravitational wave detection experiments
- 3. Pulsars
- 4. The transient sky
- 5. Fast radio transients
- 6. Electromagnetic counterparts of gravitational waves
- 7. X-ray binaries
- 8. High-frequency Galactic and extragalactic surveys
- 9. Supernova remnants
- 10. Radio galaxies and diffuse emission in galaxy clusters
- 11. High-resolution spectroscopy
- 12. SETI

HIGH-FREQUENCY OBSERVATIONS

Future applications at 30-100 GHz with the SRT

- Mapping Galactic filaments
- Survey of Complex Organic Molecules
- Galactic maser surveys and study of methanol megamasers
- CO and SiO transitions and dense gas tracers
- Sunyaev-Zeldovich effect in galaxy clusters
- Electron energy distribution cut-off/breaks
- Solar Physics-Space Weather applications

FIRST SCIENTIFIC RESULTS

First 7 GHz images of large Supernova Remnants (Egron et al., 2017a) EVN observations of methanol maser spost (Sanna et., 2017)

FIRST SCIENTIFIC RESULTS

Wide-band spectral-polarimetric observation of galaxy cluster (Murgia et al., 2016)

RIGHT ASCENSION (J2000)

Intra-cluster magnetic field power spectra (Govoni et al., 2017)

Relic radio emission from galaxy clusters (Loi et al., 2017)

1. CASTIA: Source Visibility

Vacca et al. (2013)

2. ETC: Exposure Time Calculator

(←) → C' û (i) www.ira.inaf.it/expotime/SRT_TotalPower.html	▣ ···· ◙ ☆
🌣 Most Visited 🝯 Getting Started 🐭 wordreference 🛞 castia 🥏 NED 🏧 ADS ESO 🚊 Skyview 國 BAX 🛛 🖋 Missioni 🧧 Scimago 🛞 Catering 🏢 Discos 🛞 SRT Schedule	e 🗷 SD roster PB pbworks 🔮 skyview 🏵 Foresteria SRT PB Wiki 📎
SRT Total Power Observations version 1.1	
Receiver and backend parameters	
Receiver Select a receiver Bandwidth per IF (MHz) Number of output IFs 1	
Observational parameters	
Source elevation (degrees) 30	
Season Summer ·	
• <u>Radiometer Formula computations</u> (An example of computation for Position Switching observations will be given in the output page.)	
On-The-Fly Cross Scan	
Scan Speed (arcmin/sec)3.0Scan length (integer n. of HPBW)5Sampling interval (sec)0.04	
On-The-Fly Map	
Scan Speed (arcmin/sec) 3.0 Map edge (integer n. of HPBW) 5 Sampling interval (sec) 0.04 Scans/HPBV	V 3.0
O Pointlike: Flux (mJy/beam) 15.0	
Extended: Flux (mJy) 15.0 x size (arcmin) 0.5 y size (arcmin) 0.5	
If sensitivity is given the corresponding time is computed, and vice versa.	
• Sensitivity (mJy/beam) • Total time (sec)	

Zanichelli et al. (2015)

3. Meteo Forcasting: numerical weather prediction model on timescales of 36 h to allow for dynamic scheduling

≡	SRT atmosphere monitoring system	ψ
General Info		
SRT has been equiped with an atmospheric monitoring and for find both measured and forecasted data organized in a structu	ecasting system in order to support observations mainly above 22 GHz, where the attenuation due to the H ₂ O resonance strongly affects the incoming radiation. I red way. If you need a more portable interface you may install the <u>app</u> . The monitoring system is mainly based on a local area model and on a microwave radiome	Here you will eter.
About data		
Туре	Description	
WRF-tau	Forecasted tau for a given frequency	
WRF-plots	Useful forecasted data for SRT	
WRF-Clouds	Forecasted cloud cover for Sardinia	
WRF-Rain	Forecasted cumulative rainfall for Sardinia	
WRF-RH	Forecasted relative humidity for Sardinia	
WRF-WindTemp	Forecasted wind and temperature for Sardinia	
Radiometer	Near real-time radiometer measurements	

Local Area Model

We run a state-of-the-art weather local area model (LAM), <u>WRF</u>, on a daily basis to provide SRT with the forecast of opacity, IWV, ILW, rain and wind. The forecast area includes Sardinia and part of Corsica with a spatial resolution of about 3 km. The 48 hours model output provides with 17x3-hours epochs (from 00 UT) and 17 vertical layers (from 1000 to 50 hPa). The SRT opacity forecast is evaluated, by means of a radiative transfer function, considering the absorption coefficients derived from the molecular species concentrations predicted by the LAM.

Radiometer

The radiometer is an accurate instrument able to perform azimuth-elevation scans of the atmosphere in 32 channels distributed in two frequency bands: K-band from about 20 to 30 GHz and V-band from about 50 to 60 GHz. In K-band, the radiometer mainly retrieves opacity, IWV and ILW, while at V-band it retrieves the vertical temperature profiles.

Nasir et al. (2013), Buffa et al. (2016)

4. Basie: Schedule Creator, Marco Bartolini

← → C ⁴	https://github.com/discos/basie			~ … ◙ ☆	⊻ II\ 🗊 ≡
🔅 Most Visited 🧕 Getting Started 🦗 wordreference 👌) castia 🥏 NED 🌆 ADS ESO 🚊 Skyview 🛽	🛚 BAX 👘 🥓 Missioni 🗧 Scimago 🛞 Catering 🏢 Disc	cos 🛞 SRT Schedule 🛞 SD roster PB	pbworks 🚊 skyview 🛞 Foresteria SRT PB V	viki »
	Features Business Explore	Marketplace Pricing This repository Se	arch Sign in or S	Sign up	
	Giscos / basie Code ① Issues 10 ① Pull rec	uests 1 🗏 Projects o 📊 Insights	Ø Watch 2 ★ Star 0 Ŷ Fo	ork 1	
	Italian radiotelescopes scheduling softw	Join GitHub today itHub is home to over 20 million developers working togethe and review code, manage projects, and build software toge Sign up	r to host ather.	miss	
	⑦ 179 commits	oranches 🔊 5 releases 🏙 3	l contributors ∯ BSD-3-Claus	ie Inload *	
	flyingfrog81 Merge pull request #31 from dis	cos/fix-issue-30	Latest commit ooffeee on Aug	2, 2017	
	🖿 doc	updating developer documentation+	2 yea	ars ago	
	scripts	updated documentation	2 yea	ars ago	
	in src	Fix #28: duplication of backend definition in BCK file	8 mont	hs ago	
	in test	Fix #28: duplication of backend definition in BCK file	8 mont	hs ago	
	.gitignore	updating developer documentation+	2 yea	ars ago	
	.travis.yml	added unittest2 for python2.6 testing compatbility	2 yea	ars ago	
	Basie_user_manual.pdf	Updated user's guide (0.6.4)	2 yea	ars ago	
		added .gitignore and LICENSE files	2 yea	ars ago	
	Makefile	various bugfixing	2 yea	ars ago	
	README.md	better docs	2 yea	ars ago	
		Merce branch 'master' into v0.6	2.16	200 ac	

https://github.com/discos/basie

OBSERVING

People: Marco Bartolini, Marco Buttu, Carlo Migoni, Andrea Orlati, Sergio Poppi, Simona Righini, Antonietta Fara

OBSERVING

OBSERVING

DATA REDUCTION TOOLS

1. SDI: SRT single-dish imager (Egron, Pellizzoni et al. 2017)

2. SCUBE: Single-dish Spectral-polarimetry Software (Murgia et al. 2016)

3. SRT single-dish Tools (Bachetti et al. 2016)

THANK YOU!

Sergio Poppi

×

1

2