

Optical Infrared Instrumentation at INAF

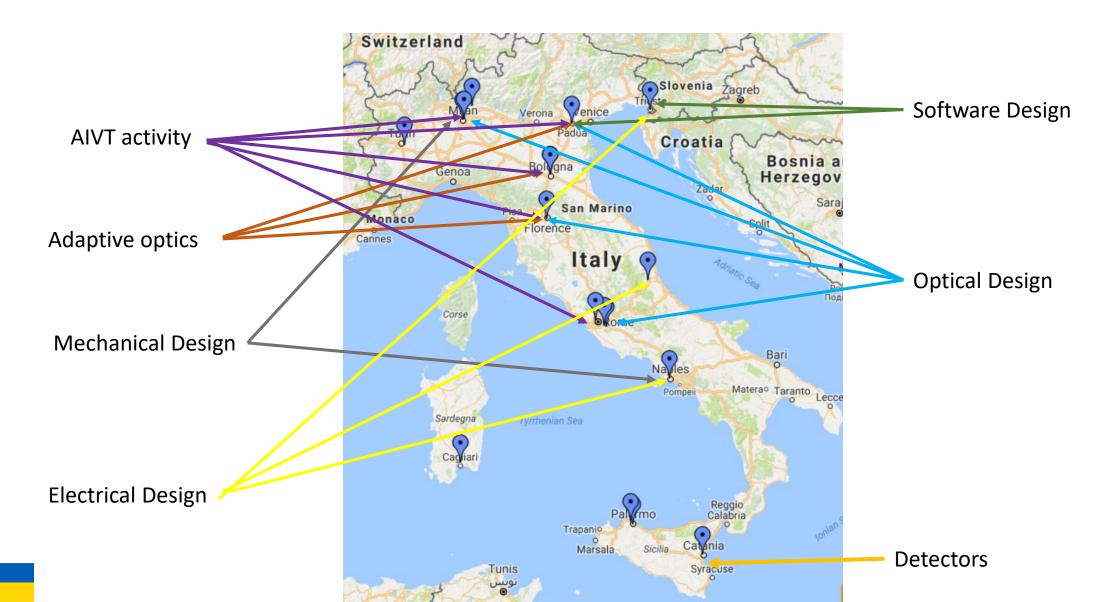
V.N. Karazin Kharkiv National University – INAF Bilateral Workshop on Astrophysics 23 March 2018

Outline

- INAf technological approach
- R&D few examples
- Instrumentation development few examples

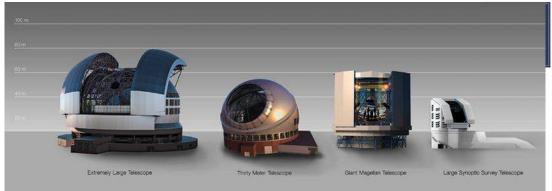
INAF Instrumentation and technology approach

- Technology R & D
 - Improve scientific performance for next generation instrumentation
 - Enable new Instrumentation Ideas/ architectures
- Instrumentation design and Integration
 - Implement Edge-technology to maximise the Instrument performances
 - Improve the know how and the core competences



Core competences Vs Technological Transfer

- In house Development
 - Increase the Institute core competences
 - Allow «flexible» evolution of the projects
 - Usually Cheapest
- Industry outsourced Development
 - Stronger Product Quality Assurance
 - Usually more clear develoment path
- Hybrid solution
 - Combines the core competencies of the Insitute with the Industry Quality Assurance
 - Easy the Technology transfer


Main Competence distributionin INAF

Why ELT era require R&D

- the need to produce an enormous number of hexagonal mirror segments to cover the collecting area of around 1400 square metres.
- the active correction of the mirrors to compensate for the mechanical deformation caused by the enormous weight;
- adaptive correction to obtain a real gain in terms of spatial resolution;
- the dimensions of the instruments that start to take on enormous proportions, especially given the current limits on the maximum possible dimensions of optical elements such as lenses, mirrors, reticules and prisms;
- the increase in the detecting area with consequent construction of ever larger detector mosaics.

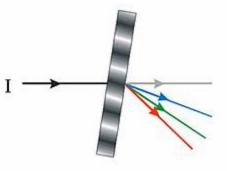
Instrument Oriented R&D

- Innovative Adaptive optics
 - New wavefront sensors

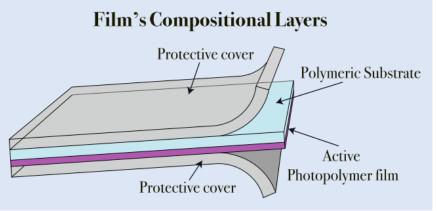
. . .

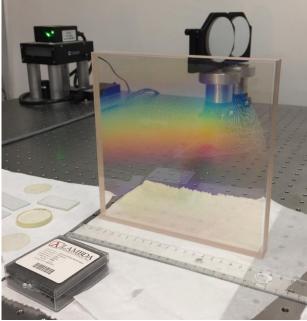
- Innovative AO architectures
- New materials for Astronomy
- New optical manufacturing technologies
- Innovative integration techinques

Adaptive Optics R&D


- The development of technologies for thin, deformable mirrors, with electromagnetic actuators, including the development of the associated optical components and metrology, innovative moulding technology (hot slumping) for thin shells, capacitive sensors and actuators, electronics and control systems.
- The development of new kinds of wavefront sensors, able to observe both natural and artificial reference stars (also in an unconventional way), deriving information not traditionally produced, such as the three dimensional structure of turbulence or phase shift between the various sectors of the main mirror.
- The optimisation of the observing strategy to maximise the scientific return of instruments served by adaptive optics, encouraging meetings, working groups and workshops both at the national and international level.

Volume Phase Holographic Gratings


Diffraction thanks to a periodic refractive index modulation.

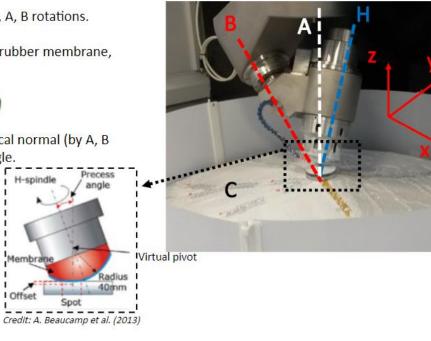

Volume Phase Holographic Transmission Diffraction Grating

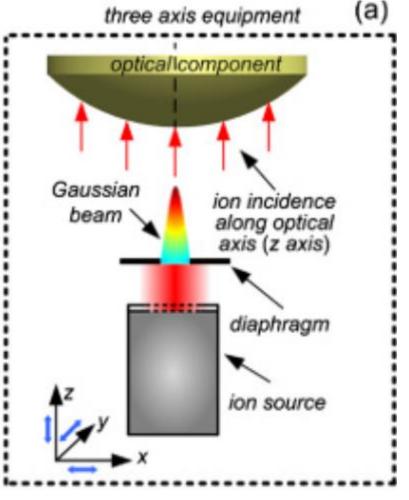
Features:

- Large peak efficiency (>90%)
- Tunable efficiency (Super Blaze)
- Large size (up to 30x60 cm)
- Large dispersion (up to 6000 l/mm)
- Robust, AR coating, complex structure
- Work very well in Vis-NIR

Innovative holographic materials are used to make VPHGs up to 20 cm in diameter; Nine VPHGs based on such new materials are mounted on astronomical spectrographs

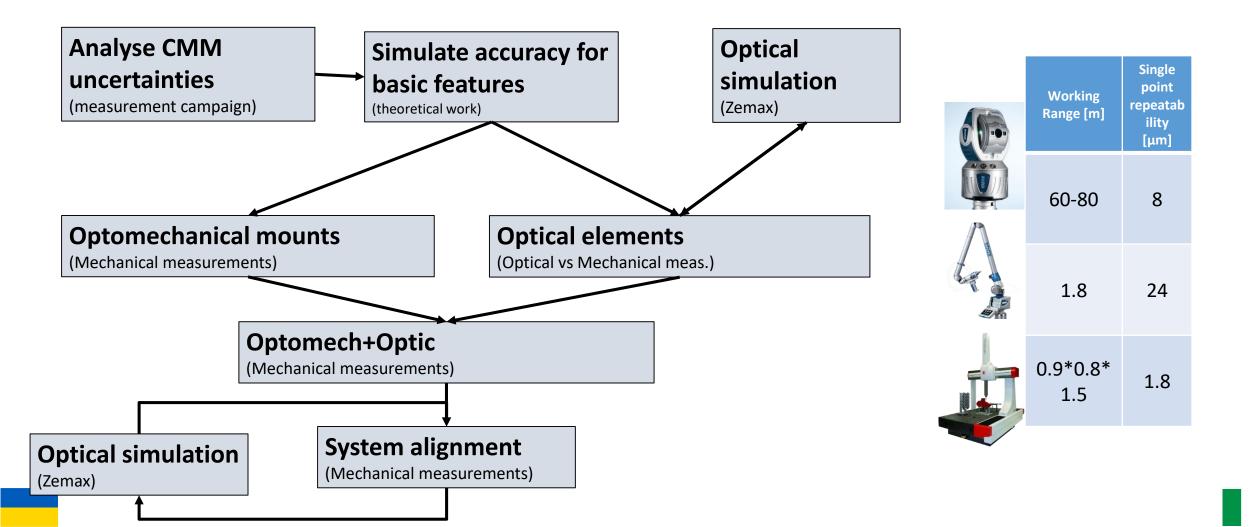
In general, we are interested and we have a broad expertise in dispersing elements for astronomy:


Optical Manufacturing Techniques


7-axis Robotic System

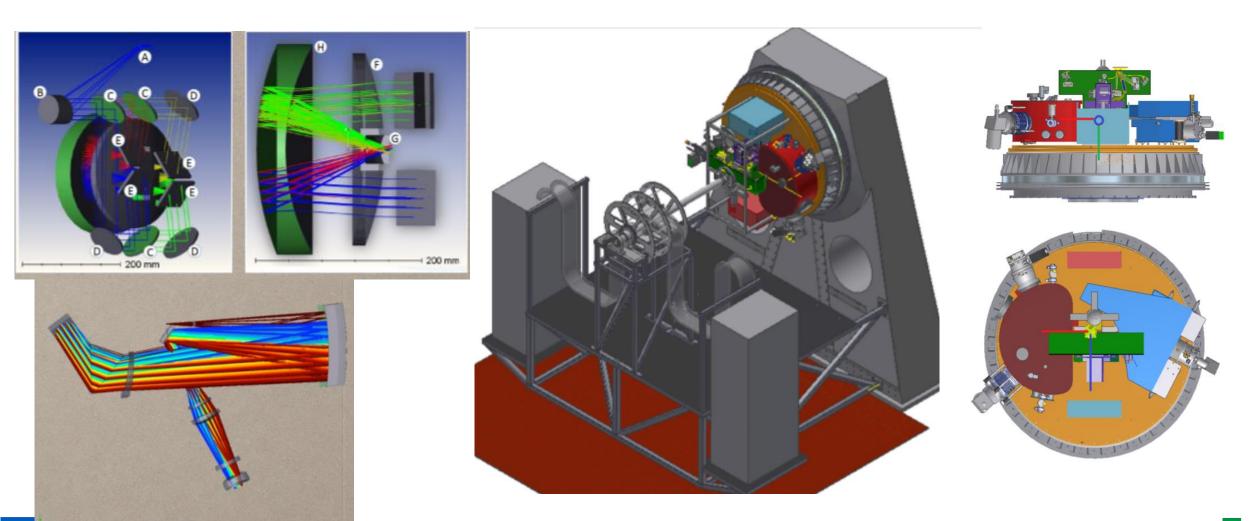
- Axes: X, Y, Z, C table, H tool spindle, A, B rotations.
- The tool is a spherical and inflated rubber membrane, named bonnet.

Bonnet tool


- H axis is inclined to the surface's local normal (by A, B rotations), defining the precess angle.
- A, B axes cross H axis at the center of curvature of the bonnet.

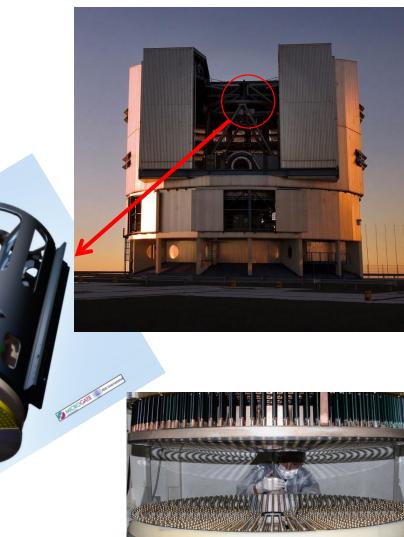
Completed and delivered Instrumentations

	Development together with external consortia Together with external consortia ESO was responsible for the definition and contributed to the design, construction and implementation at the observatories of th	e	Inhouse development The following operational instruments have been built under the of ESO:
	following instruments and facilities:		For Paranal
	For Paranal		CRIRES (VLT)
	AMBER (VLTI)		HAWK-I (VLT)
	FLAMES (VLT)		ISAAC (VLT)
	FORS1+2 (VLT; FORS1 retired)		UVES (VLT)
	KMOS (VLT)		For La Silla
	LGSF (VLT)		CES (3.6m; retired)
	MIDI (VLTI)		EFOSC2 (NTT, formerly 3.6m; retired)
	MUSE (VLT)		EMMI (NTT; retired)
	NACO (VLT)		SOFI (NTT)
_	OmegaCAM (VST)		SUSI2 (NTT; retired)
	SINFONI (VLT)		
	SPHERE (VLT)		
	VIMOS (VLT)		
	VISIR (VLT)		
	X-Shooter (VLT)		
	For La Silla		
	FEROS (2.2m)		
	HARPS (3.6m)		
	WFI (2.2m)		



Instrument under development

	Design Phase	Manufacture, Assembly Integration and Testing	Commissioning	Upgrades	Infrastructure
	ERIS (VLT)	MATISSE (VLTI)		VISIR (VLT)	AOF-GALACSI (MUSE)
	MOONS (VLT)	GRAVITY (VLTI)	9/1	CRIRES+ (VLT)	AOF-GRAAL (HAWK-I)
	4MOST (VISTA)	ESPRESSO (VLT)		1	AOF-DSM
					AOF-4LGSF
					VLTI


VLT: DSM, the UT4 Deformable Mirror

Adaptive Secondary mirror Replacing the Dornier rigid Secondary of UT4

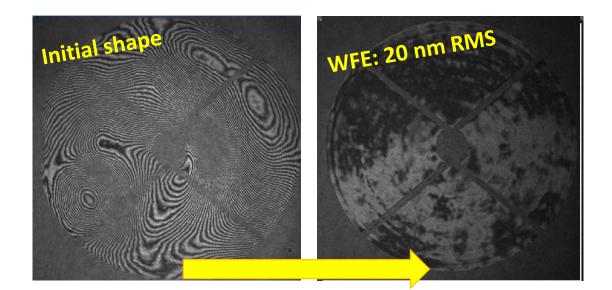
- Shape: Convex, Aspheric
- OD: 1.2 m
- Thin Shell thickness: 2mm
- # actuators: 1170
- Settling time: < 0.5 ms

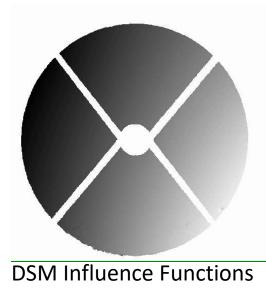
'Evolution' of LBT AdSecondary:

- Dynamic FeedForward (2x faster)
- New design of Ref Body, actuators
- Antiseismic

DSM project

- Partners
 - ADOPTICA as prime-contractor (companies consortium, MG+ADS)
 - INAF-OAA as:
 - Independent consultant/reviewer
 - sub-contractor for Optical Characterization and Verification


- INAF Tasks:
 - Consultant (AO expertise)
 - Reviewer for TAE1
 - Subcontractor: optical test
 @ ESO on ASSIST test facility

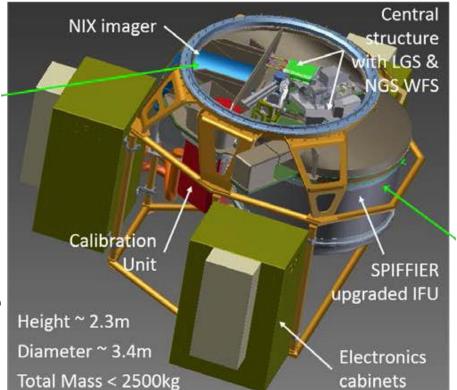


Optical test of the DSM on ASSIST

The Optical Calibration of a defomable mirror consists in:

- 1. Calibrate the actuator influence functions;
- Compute the actuator commands to produce a flat optical shape
- Calibrate the internal metrology to allow open loop, large stroke commands (chopping, field stabilization, e.g.)

ANOIZAN OT LE ISLIL


VLT: ERIS instrument

ERIS, the Enhanced Resolution Imager and Spectrograph, is an instrument for the Cassegrain focus of UT4 at the VLT. It is made of:

two science instruments:

- NIX: infrared imager providing diffraction limited imaging, Sparse Aperture Masking (SAM) and pupil plane coronagraphy capabilities from 1 to 5 μm.
- SPIFFIER (Spectrometer for Infrared Faint Field Imaging with Enhanced Resolution): nearinfrared (1.0-2.5 μm) integral field spectrograph (upgraded version of SPIFFI)
- An Adaptive optics module with single conjugated LGS and NGS modes, using AOF DSM and LGS facilities
- A calibration Unit (CU).

ERIS will integrate, substitute and enhance the functionalities of NACO and SINFONI

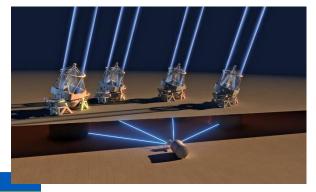


Cost: 6M€ + 115FTE

Country	Institute	Lead roles
Germany	MPE	Project office, systems engineering, central structure, SPIFFI upgrade, SPIFFIER
Italy	INAF-Arcetri	Adaptive optics, warm optics
	INAF-Teramo	Calibration unit
	INAF-Padova	Instrument control SW
UK	ATC	NIX (including data pipeline)
Switzerland	ETH-Zurich	NIX filters, masks, wheel mechanisms
ESO		Handling tool, guider arm upgrade, detector controllers, RTC/SPARTA

VLT: ESPRESSO instrument

The main scientific drivers for ESPRESSO are:

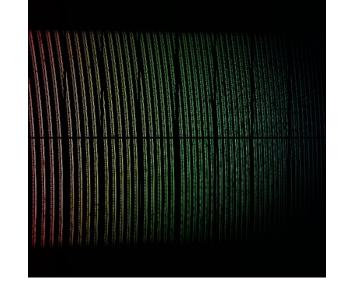

•the measurement of high precision radial velocities of solar type stars for search for rocky planets

•the measurement of the variation of the physical constants

•the analysis of the chemical composition of stars in nearby galaxies

These science cases require an efficient, high-resolution, extremely stable and accurate spectrograph.

Requirement	Standard 1-UT	4-UT	Very-High Res 1-UT
Wavelength Range	380-686 nm	380-686 nm	380-686 nm
Resolving Power	120.000	30.000	220.000
Aperture on Sky	1.0 arcsec	4x1.0 arcsec	0.5 arcsec
Sampling (average)	3.3 pixels	4.0 pixels (binned x2)	2.1 pixels
Spatial Sampling	6.9 pixels	4.0 pixels (binned x2)	3.5 pixels
Simultaneous reference	Yes (no sky)	Yes (no sky)	Yes (no sky)
Sky subtraction	Yes (no sim. ref.)	Yes (no sim. ref.)	Yes (no sim. ref.)
Total Efficiency	>10% at peak	>10% at peak	> 7% at peak
Instrumental RV precision (requirement)	<10 cm/sec	<=5 m/sec	<=5 m/sec

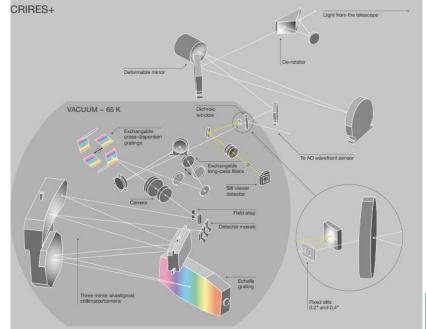


Cost: 13M€ + 130FTE

Centro de Astrofísica da Universidade do Porto Universidade de Lisboa, CAAUL and LOLS INAF, Osservatorio Astronomico di Trieste INAF, Osservatorio Astronomico di Brera Observatory of the University of Geneva Physics Institute, University of Bern Instituto de Astrofísica de Canarias European Southern Observatory

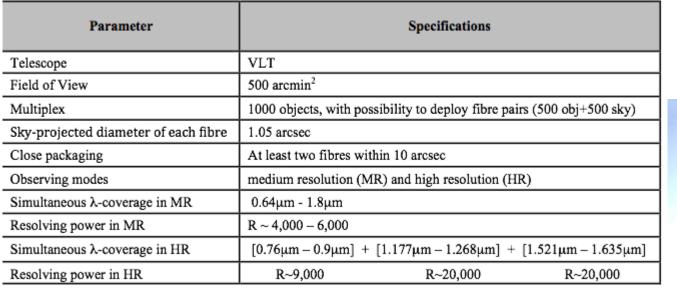
espresso

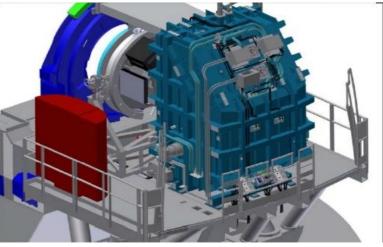
Astronomical Observatory	University of Geneva	OGE	Switzerland
Physics Institute	University of Bern	SRPS-Bern	Switzerland
Instituto de Astrofísica de Canarias	Tenerife	IAC	Spain
Osservatorio di Trieste		INAF-OATS	Italy
Osservatorio di Brera		INAF-Brera	Italy
Centro de Astrofisica	Universidade do Porto	CAUP	Portugal
Facultade de Ciencias	Universidade de Lisboa	FCUL-CAAUL	Portugal



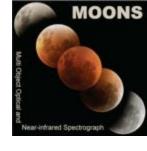
VLT: CRIRES+ instrument

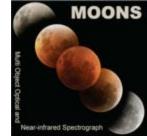
- Transform CRIRES into an echelle spectrograph to increase the wavelength range that is covered simultaneously by a factor of ten.
- In addition, a new detector focal plane array of three Hawaii 2RG detectors with a 5.3 μm cut-off wavelength will replace the existing detectors
- a new spectropolarimetric unit will be added and the calibration system will be enhanced.

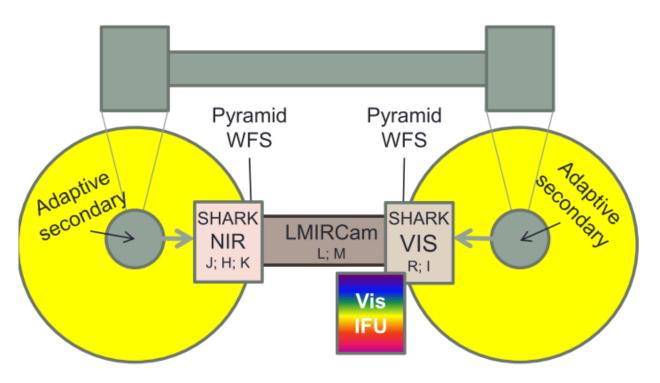

VLT: CRIRES+ consortium


The CRIRES+ consortium:

- ESO
- E Thüringer Landessternwarte Tautenburg (TLS)
- E-Institute for Astrophysics Göttingen (IAG)
- E+INAF Arcetri Astrophysical Observatory (Florence)
- E-Uppsala Universitet

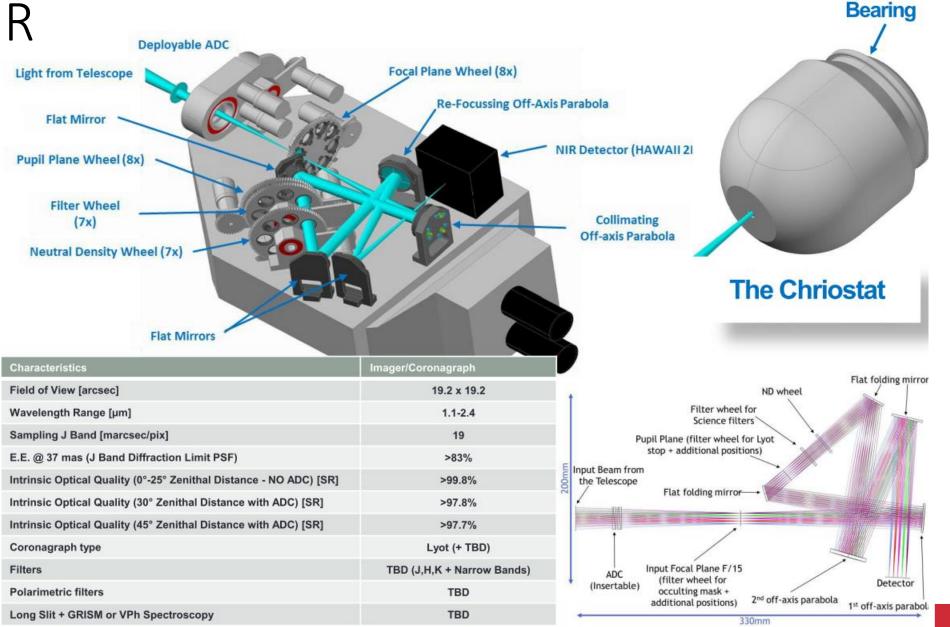




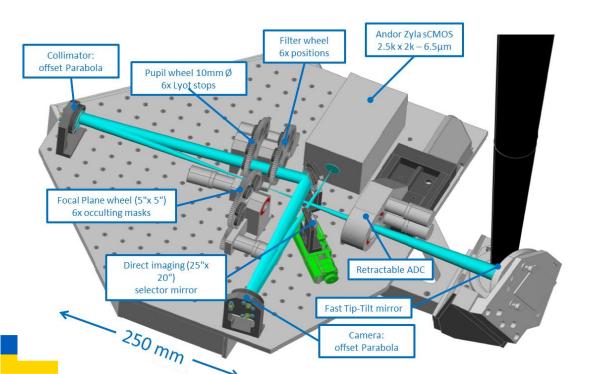


LBT Shark NIR

- In fact, SHARK basic features are:
- NIR Coro-Camera (J,H,K)
- VIS Coro-Camera (R,I)
- VIS Spectrograph



- High resolution fast imager with FLAO@LBT
- Bynocular AO from 600


 900 and 900 ÷2200
 nm
- Experimental focal plane for coronagraph and...
- Synchronous recording of wave-front residual

LBT Shark VIS

- High resolution fast imager with FLAO@LBT
- Bynocular AO from 600 ÷ 900 and 900 ÷2200 nm
- Experimental focal plane for coronagraph and...
- Synchronous recording of wave-front residual

SPECIFICATION

Direct Imager

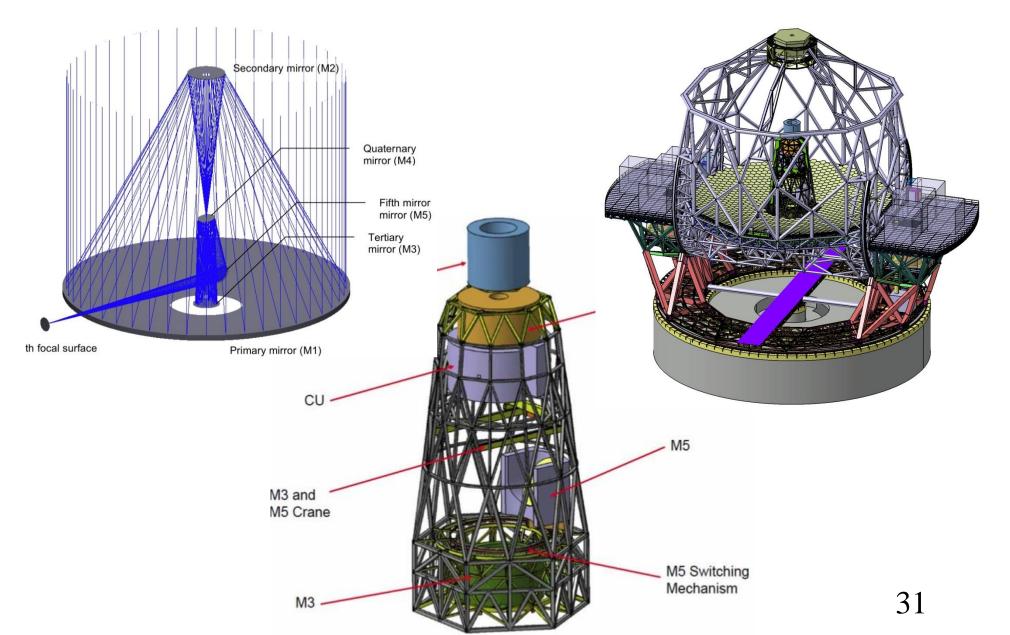
- ✓ Field of view = (20x25)" or (8x10)"
- \checkmark Sampling 4÷10 mas /pixel
- \checkmark ADC bandwidth 600 \div 900 nm
- Coronagraph
- ✓ Field of view = (5x5)"
- \checkmark Sampling 4÷10 mas /pixel
- ✓ Focal plane 6 x occulter
- ✓ Pupil plane 6 x stops/apodizers

Detector

- ✓ Fast sCMOS imager 1 e- r.o.n.
- \checkmark Exposure 10e-4 \div 30 s

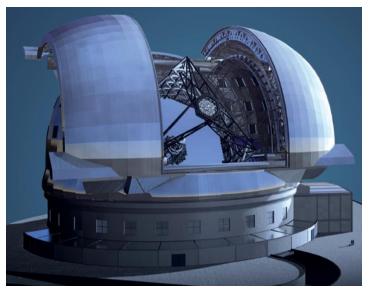
NTT Soxs

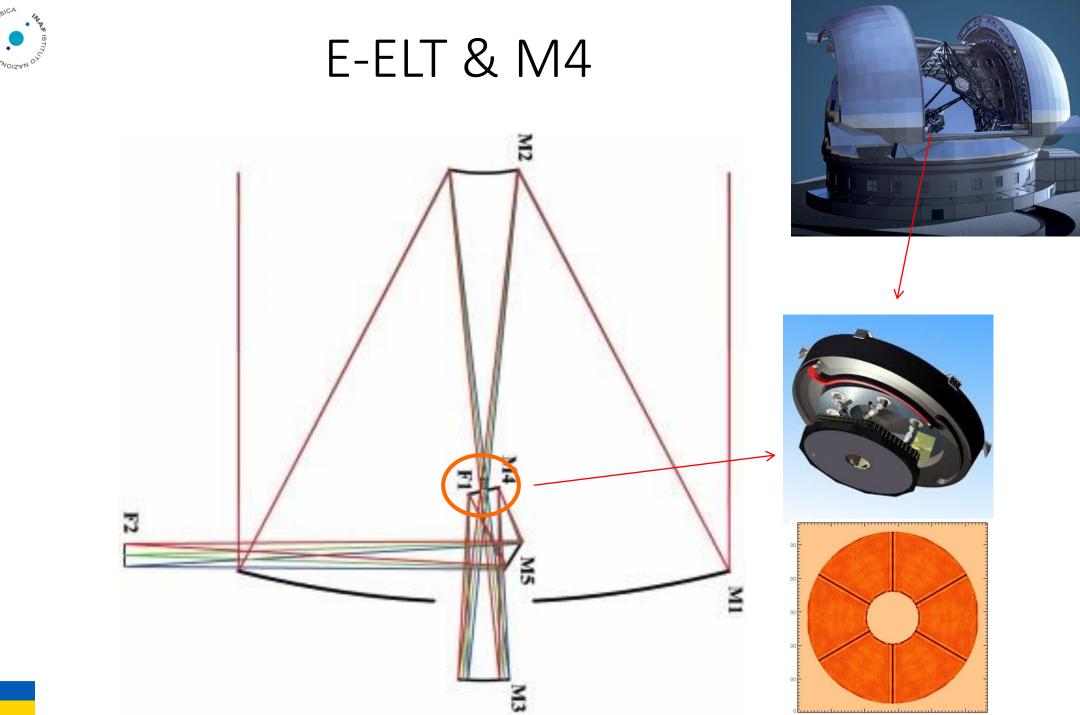
- Broad band spectrograph 350-2000 nm
- - R~4,500 (3,500-6,000)
- Two arms (UV-VIS + NIR)
- - S/N~10 spectrum
- - 1 hr exposure for R~20
- - Acquisition camera to perform photometry ugrizY (3'x3')



The E-ELT Project The Telescope

- **40-m class telescope optical-infrared** telescope
- Segmented primary mirror
- Adaptive Optics assisted telescope
- Multi-LGSs side launched
- Diffraction limited performance: 12mas@K-band Wide field of view: 10 arcmin
- Mid-latitude site (Amazones/Chile)
- Fast instrument changes
- VLT level of operations efficiency.


The E-ELT Project Adaptive telescope


EELT: the M4 Deformable Mirror

- Optical Shape: flat
- OD: 2.34m, ID: 0.54m
- # segments: 6
- # actuators 5316
- on a triangular pattern (3.15cm pitch, 52.5 cm projected on M1)
- Settling time< 1ms
- Fitt. Error, median seeing: 145 nm WF
- Flattening spec:
 20 nm WF
- Pupil position midway M4/M5:
 - → Optical area moves on M4, depending on field
- M5: Tip-Tilt only

100 200 300 400 500

M4 project

And the second sec

- Partners
 - ADOPTICA as prime-contractor (companies consortium, MG+ADS)
 - INAF as sub-contractor
- Allocated Budget:
 - ~30M€ (tot)
 - ~ 1.3M€/7y (INAF)
 - 2.5FTE/y
- INAF Team:
 - Riccardi, Briguglio, Xompero (OAA)
 - Pariani (OAB)

- INAF Tasks:
 - AO expertise
 - Error budget
 - Optical design of Test Tower
 - Test plan and procedures
 - Support of Tower integration and characterization
 - M4 optical test (2022)

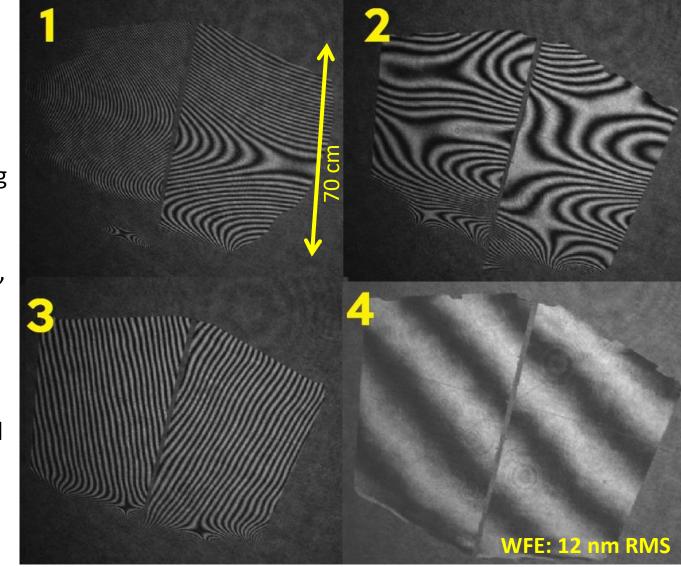
Optical test of the M4 Demonstration prototype

M4DP:

- 2 segments, flat
- Size: 30cmx70cm (x2)
- #actuators: 2x111
- Testbench for:
 - Actuator 'brick' concept
 - New electronic design
 - New control strategy
- INAF responsible

for optical test

M4DP: optical test result

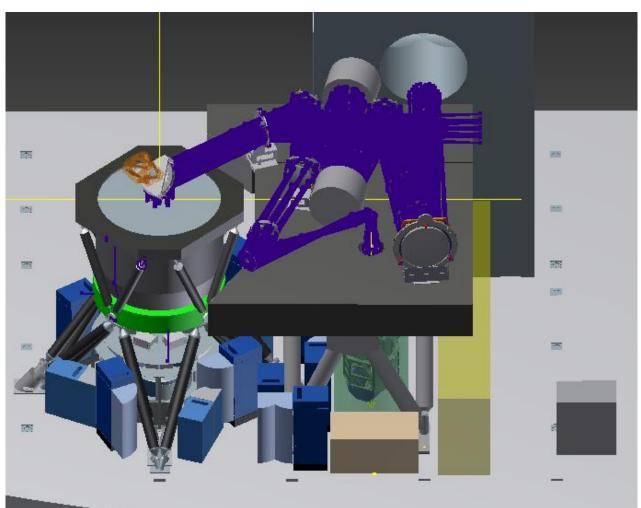

And the second s

1: Initial shape

2: 2x10 modes flattening

3: high orders flattening, no phasing

4: whole system flattened and co-phased


EELT: MAORY

MAORY: Multi-conjugated Adaptive Optics relaY

serving MICADO instrument @EELT first-light

MAORY consortium

- INAF (PI: E. Diolaiti)
 - Lead institute (AOBo, IASF-Bo, OAA, OAB, OANa, OAPd)
 - System-level of MAORY
 - Sub-systems: Platform, Post-focal relay optics including deformable mirrors, Real-time computer, NGS wavefront sensor module, Auxiliary equipment, Science support tools
- INSU IPAG
 - Sub-system: LGS wavefront sensor
- ESO
 - Project customer
 - Supplier of components and services
 - Joint undertakings: adaptive optics wavefront sensor cameras, real-time computer

What will Maory do?

Expected MCAO performance (telescope included)

Assumptions: wavelength 2.2 µm, one deformable mirror in MAORY, 6 LGS, full M1

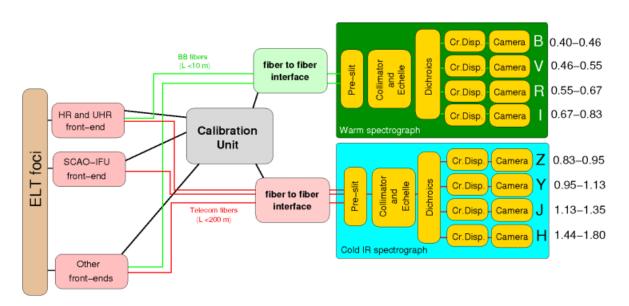
Strehl ratio	Sky coverage	Conditions
SR ≈ 0.3 (TBC)	50% (TBC)	Median seeing As close to zenith as possible Field of view 1 arcmin
SR ≈ 0.15 (TBC)	50% (TBC)	Sub-optimal seeing Zenith distance 30° Field of view 2 arcmin
SR ≈ 0.4-0.5 (TBC)	Not applicable	Best seeing Zenith distance 30° Field of view 20 arcsec

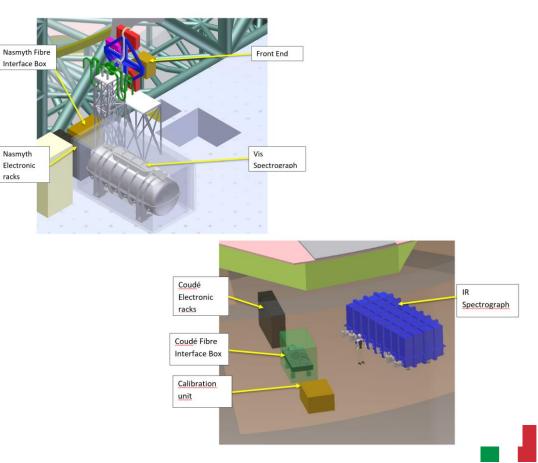
With 2 deformable mirrors in MAORY, performance under median conditions is comparable to performance under best conditions with 1 deformable mirror

Expected SCAO performance: SR > 0.6 (goal > 0.7)

Conditions: on-axis, zenith angle < 30°, guide star magnitude V < 12, median seeing

EELT: HIRES


High Resolution 100000 Spectrograph providing from 0,4 to 2,5 um wave coverage


Nasmyth

Electronic

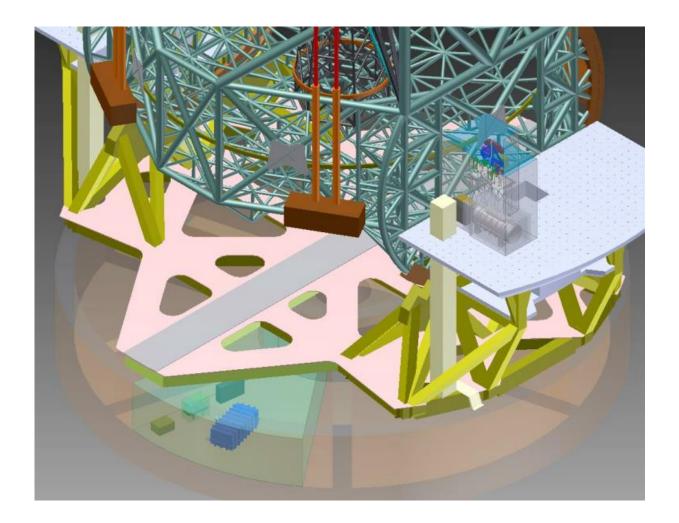
racks

- 2 modules BVRI and ZYJH
- Fiber injection: seeing and diffraciton limited mode

HIRES consortium

 \mathbf{O}

1-


h.

4

4

22 14 23 15

- INAF (PI: A.Marconi)
- Consortium Members
 - Brazil
 - Chile
 - Denmark
 - France
 - Germany
 - Italy
 - Poland
 - Portugal
 - Spain
 - Sweden
 - Switzerland
 - UK

Thank you!