

- **1. Accretion process (from inner disc onto the star)**
- **2.** Large samples of YSOs with Macc measurements
- 3. Accretion in phases earlier than Class II
- 4. Accretion at late stages (Transitional discs)
- 5. Macc measurements (methodologies)

#### 1. Accretion process (from inner disk onto star):



- understand the star disc interaction: Magnetospheric model Ok ?
- topology of the stellar magnetic field: generally bipolar ?
- variable Macc but also star rotation and obscuration (disc distortion)
- effects of accretion on the stellar photosphere ?



## **1. Accretion process (from inner disk onto star):**

- understand the star disc interaction: Magnetospheric model Ok ?
- topology of the stellar magnetic field: generally bipolar ?
- variable Macc but also star rotation and obscuration (disc distortion)
- effects of accretion on the stellar photosphere ?



Discussion On Macc

# 2. Large samples of objects with measured M<sub>acc</sub>

- $M_{acc}$  decreases with  $M_{star}$ , more steeply at low  $M_{star}$  (?): mechanisms ?
- *M<sub>acc</sub>* decreases with time (smoothly): after some 5Myr no discs (at [Fe/H]=0)

Discussion on Macce

- for each value of  $M_{star}/age$ , large spread of  $M_{acc}$
- different accretion mechanisms may occur at early times
- effects of metallicity (much higher Macc ?): EELT studies in LMC &SMC



# 3. How does accretion work at earlier phases ?

- early stages (disk still fed by collapsing core, high  $M_{acc}$ )
- spasmodic episodes of high M<sub>acc</sub>





Protoplanetary disks seen through the eyes of a generation Discussion on ut MacCts

Evans et al. 2009 Dunham et al. 2015

#### 4. Accretion at later stages (transitional discs) ?



- accretion rate in TDs with large dust cavities
- accretion in transitional discs (TDs) vs. primodial discs (PDs)
- accretion in TDs with large dust cavities: accretting planets ?



### **5.** Macc measurements: $L_{acc}$ not too bad, but



- homogeneous and self-consistent methods to measure M<sub>acc</sub> and stel. pars.
- lines not included in estimates based on continuum excess fitting



- L<sub>all-lines</sub> : sum of all permitted lines (H, Ca II, He) + L<sub>pseudo-continuum</sub>
  - more than 70% of integrated line luminosity is in Balmer lines
  - in most (90%) YSOs  $L_{Balmer} > 60\%$  of  $L_{all-lines}$
  - in some YSO (Sz73, Sz83, Sz88A & Sz113) emission in other lines is up to 50%

## **5.** Macc measurements: $L_{acc}$ not too bad, but



at early SpT (<K3): low-contrast cont. excess — photospheric cont.</li>
alternative methods: FUV, NUV (HST) measurements of H2 (Ly-a), CIV, etc



Macc and stel. pars. for phases earlier than class II ?





VLT-ISSAC spectroscopy

Teff : from photospheric line ratios Lstar: from dereddened K-mags Lacc : Lbol — Lstar

Most protostars heavily extinct and veiled:

- no photospheric lines, no Teff & Lstar
- Lacc: from Lacc—Lline relationships



• use JWST ?