Towards the molecular complexity in protoplanetary disks

Cécile Favre
(INAF-OA Arcetri, Florence)

Davide Fedele (INAF-OAA), Dmitry Semenov (MPIA), Sergey Parfenov (Ural Federal Univ), Claudio Codella (INAF-OAA), Cecilia Ceccarelli (IPAG), Franck Hersant (LAB), E. Chapillon (LAB/IRAM), Linda Podio (INAF-OAA), Leonardo Testi (ESO), Edwin Bergin (Univ. Michigan)

JEDI meeting
Proto-planetary disks
June 27, 2018
- Production/Destruction of molecules associated with the different stages of star formation

- Evolution and Delivery of interstellar material

 - *Were they altered?*
 - *Or formed in the protoplanetary nebula?*
 - *Or are they a direct ISM heritage?*
 - *Which processes at the icy surface of grains / in gas phase prevail?*
Molecular inventory of protoplanetary disks

<table>
<thead>
<tr>
<th>Category</th>
<th>Molecules</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atoms</td>
<td>C(^+), O</td>
<td>Meeus et al. (2012)</td>
</tr>
<tr>
<td>Ions</td>
<td>HCO(^+), H(^{13})CO(^+), DCO(^+), N(_2)H(^+), CH(^+)</td>
<td>Dutrey et al. (1997, 2007), van Dishoeck et al. (2003), Thi et al. (2011), Qi et al. (2008, 2013a), Öberg et al. (2015a)</td>
</tr>
<tr>
<td>Carbon reservoirs?</td>
<td>CO, CO(_2)</td>
<td>Koerner & Sargent (1995), Pontoppidan et al. (2010)</td>
</tr>
<tr>
<td>Simple species</td>
<td>(^{13})CO, (^{18})O, OH, HD</td>
<td>Dutrey et al. (1996), Pontoppidan et al. (2010), Bergin et al. (2013), Favre et al. (2013), McClure et al. (2016)</td>
</tr>
<tr>
<td>S-bearing molecules</td>
<td>CS, SO</td>
<td>Dutrey et al. (1997), Guilloteau et al. (2013)</td>
</tr>
<tr>
<td>N-bearing molecules</td>
<td>CN, HCN, HNC, DCN</td>
<td>Dutrey et al. (1997), Qi et al. (2008)</td>
</tr>
<tr>
<td>Carbon chains</td>
<td>CCH, C(_2)H(_2), c-C(_3)H(_2), HC(_3)N</td>
<td>Dutrey et al. (1997), Pontoppidan et al. (2010), Henning et al. (2010), Chapillon et al. (2012), Qi et al. (2013b), Öberg et al. (2015b), Bergner et al. (2018)</td>
</tr>
<tr>
<td>Water</td>
<td>H(_2)O</td>
<td>Bergin et al. (2010), Hogerheijde et al. (2011), Podio et al. (2013)</td>
</tr>
<tr>
<td>O-bearing molecules</td>
<td>H(_2)CO</td>
<td>Qi et al. (2013a), Loomis et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>t-HCOOH</td>
<td>Öberg et al. (2017), Carney et al. (2017)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Favre et al. (2018)</td>
</tr>
<tr>
<td>Complex organic molecules</td>
<td>CH(_3)OH, CH(_3)CN</td>
<td>Walsh et al. (2016), Öberg et al. (2015b), Bergner et al. (2018), Loomis et al. (2018)</td>
</tr>
</tbody>
</table>
1. **Protoplanetary disks**
 - Interferometry for astrochemical studies: *sensitivity* & *resolution*

2. **O-bearing and S-bearing molecules in disks**
 - A rich organic chemistry
 - A non solar C/O ratio in T Tauri disks

3. **Planet formation & molecules**
 - Observations of the molecular content that will be partly inherited by the planet(s)
Disks are complex systems

Strong T and n gradients, UV & X-ray

Sketch of physical and chemical structure of protoplanetary disks

Henning & Semenov (2013)
Complex organic molecules in protoplanetary disks

Surface layers: molecules destroyed by UV photodissociation

Inner (r <50 AU -100 AU, T >50-100K): molecules present in warm molecular layers. Production via gas phase chemistry or formation on ices and then release into the gas phase

Outer disk / Mid plane (r >100-200 AU, T <50K): molecules are locked into the icy surface of dust grains ($\chi_{\text{H}_2} \sim 10^{-6} - 10^{-4}$), Only a few percent are in gas-phase ($\chi_{\text{H}_2} \sim 10^{-11} - 10^{-7}$)

The chemical composition of disks is hidden in ices!

 Courtesy Linda Podio

Aikawa et al. (2002)
Dullemond et al. (2007)
Bergin et al. (2007)

Water snow line

$T_{\text{evaporation}} = 150$ K
$R_{\text{snow}} \sim 2\text{-}3$ AU

Water snow line

10 AU
100 AU

X-rays

UV

atomic/ionized

molecular chemistry
Interferometry is needed to access the molecular content in disk

Bergin et al. (2007)

High angular resolution!

1 AU = Distance between the Sun and the Earth

3 AU = 0.02” at 140 pc

10 AU = 0.07” at 140 pc

50 AU = 0.4” at 140 pc

100 AU = 0.7” at 140 pc
Interferometry is needed to access the molecular content in disk

The emissive area is expected to be small (and might be closed to the central object)

It is really hard to detect a not intense transition

High sensitivity!

Öberg et al. (2015a)
Loomis et al. (2018)

Favre et al. (2013)
1. **Protoplanetary disks**
 - Interferometry for astrochemical studies: *sensitivity & resolution*

2. **O-bearing and S-bearing molecules in disks**
 - A rich organic chemistry
 - A non solar C/O ratio in T Tauri disks

3. **Planet formation & molecules**
 - Observations of the molecular content that will be partly inherited by the planet(s)
Towards O-bearing molecules in protoplanetary disks

Podio et al., in prep.
Qi et al. (2013)
Carney et al. (2016)
Öberg et al. (2017)

H$_2$CO emits from beyond the CO snowline

Efficient formation of organics on icy grain for $R > R_{CO}$ to explain the H$_2$CO ring
Towards complex molecules in protoplanetary disks

Complex Organic Molecules

CH₃OH: a key molecule in the formation routes to larger O-bearing molecules

Table 1
Methanol Transitions

<table>
<thead>
<tr>
<th>Transition</th>
<th>Frequency (GHz)</th>
<th>Upper Level Energy (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2₁₁−2₀₂ (A)</td>
<td>304.208</td>
<td>21.6</td>
</tr>
<tr>
<td>3₁₂−3₀₃ (A)</td>
<td>305.473</td>
<td>28.6</td>
</tr>
<tr>
<td>4₁₃−4₀₄ (A)</td>
<td>307.166</td>
<td>38.0</td>
</tr>
<tr>
<td>8₁₇−8₀₈ (A)</td>
<td>318.319</td>
<td>98.8</td>
</tr>
</tbody>
</table>

Walsh et al. (2016)
Towards O-bearing molecules in protoplanetary disks

First detection of HCOOH at the 4σ level without stacking!

- Rich organic chemistry: (that can lead to larger organic molecules, likely takes place at the verge of planet formation in protoplanetary disks)

- HCOOH emission extends beyond 200 AU (mm dust continuum): contribution of small grains likely contribute to the HCOOH production

N(HCOOH) \sim (2-4) \times 10^{12} \text{ cm}^{-2}

HCOOH/\text{CH}_3\text{OH} \leq 1
A depletion of elemental C in T Tauri disks

Favre et al. (2013)
Schwarz et al. (2016)
Kama et al. (2016)
Miotello et al. (2017)

CO abundance relative to H$_2$: $(0.1-3) \times 10^{-5}$ in the disk’s warm molecular layers ($T>20K$), lower than the canonical value of χ(CO) = 10^{-4}

Carbon chemistry?
(Aikawa et al. 1997, Reboussin et al. 2015)

CO chemical destruction via reactions with He$^+$
Followed by rapid formation of carbon chains (C_xH_x) or CO$_2$
Freeze-out T higher than CO \rightarrow trap the carbon in ices

Carbon reservoir in gas?
A non solar C/O ratio observed via the emission of c-C$_3$H$_2$ and S-bearing molecules

Where

Bergin et al. (2016)
Favre, Fedele, kamp (in prep.)

C/O ≥ 1

Carbon chemistry?

Oxygen chemistry?

Oxygen locking from the disk molecular layer by the freeze-out of water onto sedimenting large dust grains
1. **Protoplanetary disks**
 - Interferometry for astrochemical studies: *sensitivity & resolution*

2. **O-bearing and S-bearing molecules in disks**
 - A rich organic chemistry
 - A non solar C/O ratio in T Tauri disks

3. **Planet formation & molecules**
 - Observations of the molecular content that will be partly inherited by the planet(s)
Planet(s) formation seen in both gas and dust

Talk by D. Fedele

Favre et al. (in prep.)

see also Isella et al. (2016), Teague et al. (2018), Muro-Arena et al. (2018)

One should be able to observe the molecular content in these objects that is directly inherited by the forming planets (and small bodies)
Summary

Complex molecules (N- and O-bearing) are present towards proto-planetary disks

Observations suggest that chemistry leading to molecular complexity likely takes place in proto-planetary disks where planets might form

- ISM inheritance?
- Reprocessed?

ALMA
(resolution and sensitivity)

key interferometer for astrochemical studies

But still it will be difficult to detect larger species
« For your attention
I thank you »