The Sardinia Radio Telescope

.....

Sergio Poppi

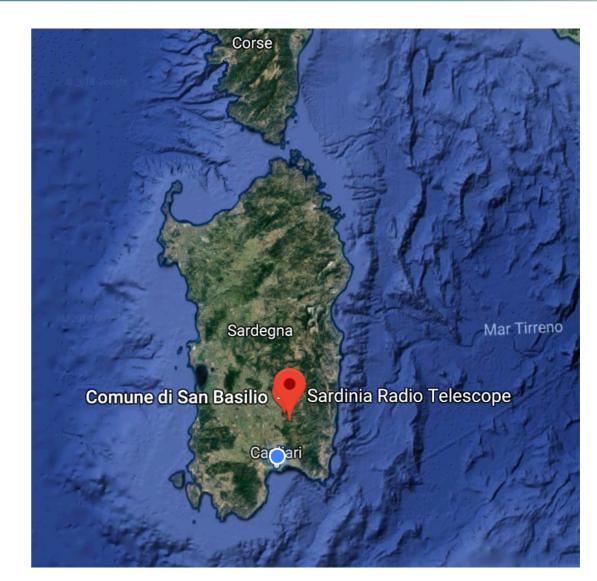
Silvia Leurini INAF OA-Cagliari

Outlook

- Radio single dish telescopes in the ALMA era
- The SRT in a nutshell
- First light instrumentation
- Next future developments

Single dish telescopes in the ALMA era


Well suited for fast mapping of extended, low surface brightness emission. Especially if equipped with *multifeed array* and with a *broad instantaneous frequency* coverage


- Large scale mapping of dense gas in molecular clouds in the Milky Way (e.g. filaments). Chemical inventory of star-forming regions
- Mapping of molecular gas tracers in nearby galaxies
- Mapping of the radio emission from the Sun and thus space weather applications
- Millimeter VLBI observations to study the physics and masses of supermassive black holes and their associated jets.

The SRT in a nutshell

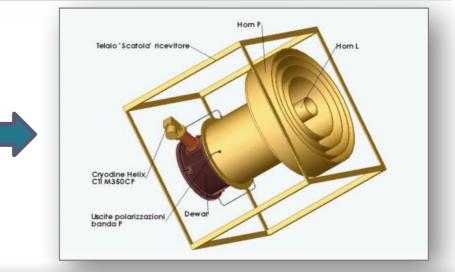
SRT is located 35km north of Cagliari at ~600m altitude

The SRT in a nutshell

Fully steerable, 64m diameter, paraboloidal radio telescope; 3 main focal positions to allocate up to 20 receivers (3 at first light); **Designed to work up** to 100GHz; **Equipped with Active Surface to** *maximize efficiency*: to correct for deformations induced by gravity. Work in progress: corrections for nonsystematic errors (e.g. temperature/ wind-related effects);

Shaping of the primary mirror from a shaped configuration to a parabolic profile

Bolli+2014, 2015; Prandoni+2017



Osservatorio Astronomico di Cagliari

NA

First light instrumentation: frontends

L/P Bands Dual frequency (310 ÷ 420 MHz -- 1.3 ÷1.8 GHz) coaxial Beam= 56.2' / 12.6' (primary focus)

C Band5.7 - 7.7 GHz mono feed,Beam = 2.8', Tsys 30K(BWG)

<image>

http://www.srt.inaf.it/project/front-end/

First light instrumentation: backends

- Total power: for continuum observations with no polarimetric information
- DFB3: Full stokes correlator with large bandwidth. Pulsar search and folding
- Xarcos: full-Stokes narrow band spectrometer with multiple observed bands at different resolutions (max ~ 500kHz). Handle multibeam
- Digital Base Band Converter: mainly for VLBI experiments

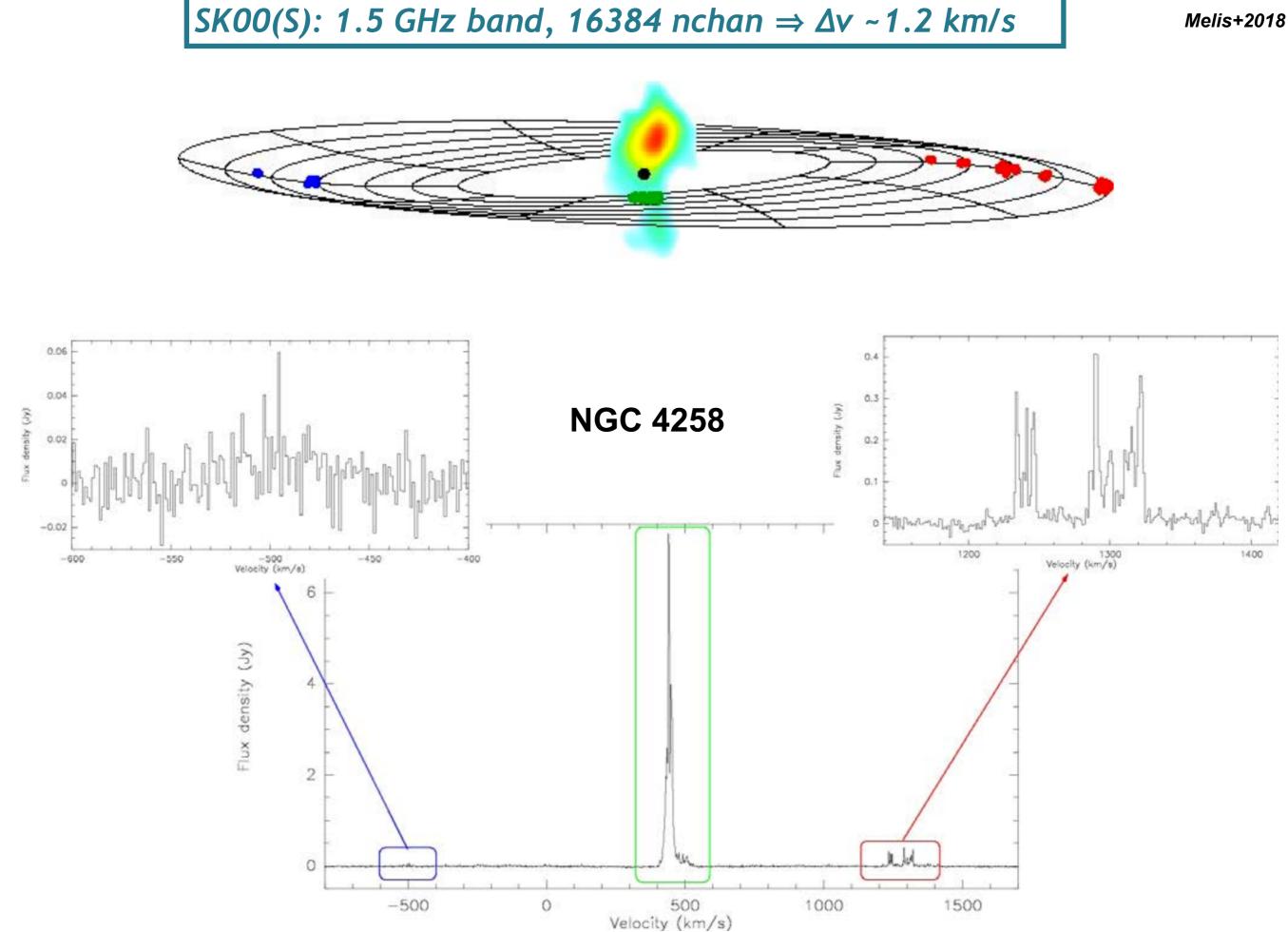
SARDARA: wide-band, multi-feed, fully-reconfigurable for continuum, polarimetry, spectroscopy, high-time resolution for pulsars and fast transients.

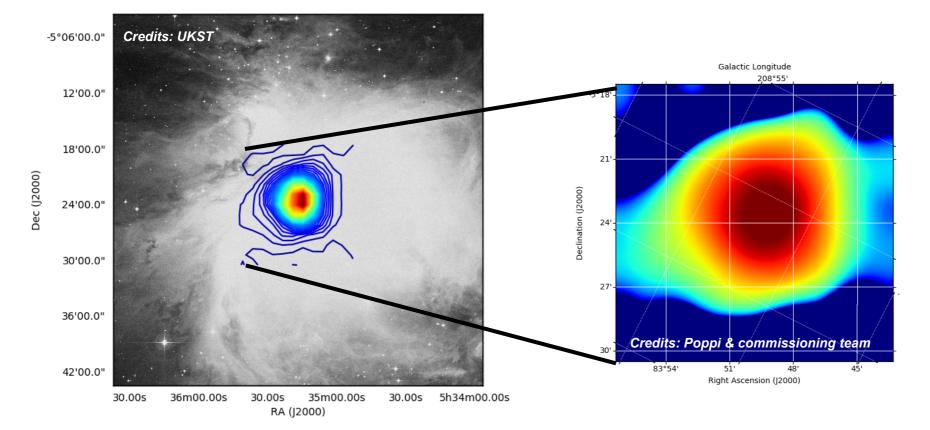
Early science configurations (2016):

• SK00(S): 1.5 GHz band, 16384 nchan $\Rightarrow \Delta v \sim 1.2$ km/s

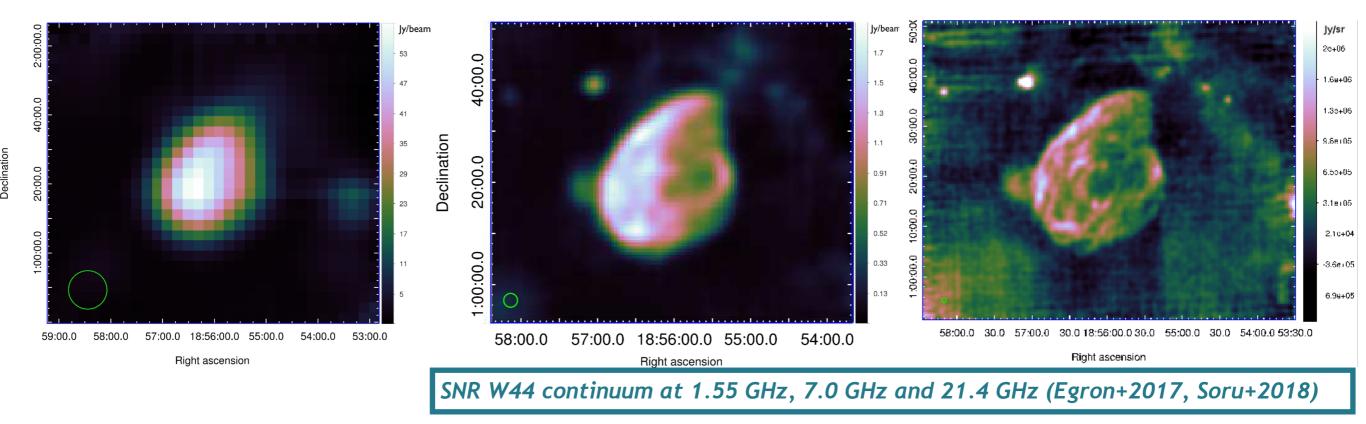
First call configurations (Sept. 2018):

SK00(S), SK03(S), SK06(S), SK77(S): 420MHz/
1.5GHz band, up to16384 nchan ⇒ Δv ~0.1-1.2 km/s

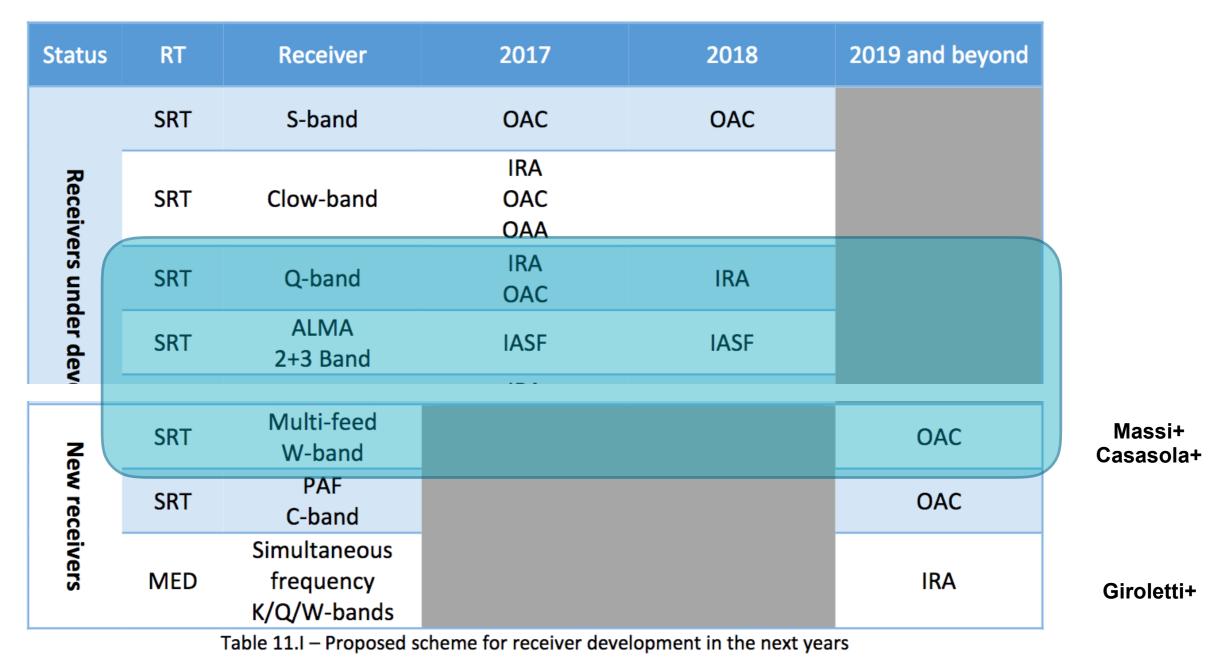

Second call configurations (Spring 2019?):


- 7 feeds: NB 150 MHz, up to 524k nchan ⇒ Δv ~ few m/s
 Z four 20 MHz units, up to 131k nchan ⇒ Δv ~ few m/s
- **1 feed: WBHR2 1.5 GHz**,~2M nchan $\Rightarrow \Delta v \ge 10$ m/s

Melis+2018


K-band 7-feed receiver (22 GHz reference)

NH_3	(1, 1)	23694.4955
$\rm NH_3$	(2,2)	23722.6336
NH_3	(3,3)	23870.1296
$\mathrm{HC}_{5}\mathrm{N}$	9 - 8	23963.9010
$\mathrm{HC_{7}N}$	21-20	23687.8974(6)
$\mathrm{HC_{7}N}$	22-21	24815.8772(6)
$\mathrm{C}_2\mathrm{S}^\mathrm{a}$	$2_1 - 1_0$	22344.030(1)


ORI-A continuum @ 20 GHz, recommissioning test

Future developments

INAF review on Receivers for Radio Astronomy: current status and future developments at the Italian radio telescopes (2017)

Future developments (ERC-2018-SyG)

ALMA 2+3 band: convert ALMA receiver in a (dual beam?) 67-116 GHz receiver, at

least 8 GHz instantaneous bandwidth

P.Is. Hennebelle, Molinari, Testi, Klessen first step of evaluation passed! soon more news...

- ability of tracing ground state rotational lines of deuterated species (DCO+, DCN, DNC, CCD, N2D+, orto-NH2D)
- \cdot chemical inventory of (star forming) clumps, and their evolution

Future developments (PON Ricerca e Innovazione 2014-2020)

Q-band multi-feed receiver: 19 feed, 33-50 GHz with integrated continuum backend and dedicated spectroscopic backend (*P.I. Orfei*)

W-band multi-feed receiver: 9 feed, 70-116 GHz with dedicated spectroscopic backend (P.I. Navarrini)

Simultaneous K/Q/W band receiver for VLBI (P.I. Bolli)

P.I. Govoni, submitted on June 15th

W-band multi-feed receiver LO = 82 GHzLO = 104 GHzLO LO HPBW≈11" 100 GHz LSB USB LSB USB 72 76 80 84 88 92 96 100 104 108 112 116 ν (GHz)

Credits: A. Navarrini

Future developments (PON Ricerca e Innovazione 2014-2020)

Q-band multi-feed receiver: 19 feed, 33-50 GHz with integrated continuum backend and dedicated spectroscopic backend (P.I. Orfei)

W-band multi-feed receiver: 9 feed, 70-116 GHz with dedicated spectroscopic backend (P.I. Navarrini)

Simultaneous K/Q/W band receiver for VLBI (P.I. Bolli)

P.I. Govoni, submitted on June 15th

New generation digital backend based on SKARAB cards (P.I. Comoretto)

- Q-band multi-feed receiver: 2 GHz per polarization per feed, 440*k* nchan $\Rightarrow \Delta v \sim 50$ m/s, HC3N, HC5N, HC7N..., CS, SiO, CH3OH
- W-band multi-feed receiver: 6 GHz per polarization/SB per feed, 12CO, 13CO, C18O, C17O (1-0) simultaneously;

Future developments (PON Ricerca e Innovazione 2014-2020)

Q-band multi-feed receiver: 19 feed, 33-50 GHz with integrated continuum backend and dedicated spectroscopic backend (P.I. Orfei)

W-band multi-feed receiver: 9 feed, 70-116 GHz with dedicated spectroscopic backend (P.I. Navarrini)

Simultaneous K/Q/W band receiver for VLBI (P.I. Bolli)

P.I. Govoni, submitted on June 15th

plus other receivers, new holographic system, temperature sensors, inclinometers....

timescale: 32 months after positive proposal evaluation!

SRT at high frequencies

Metrology: error budget of the surfaces

	Phase 1	Phase 2	Phase 3
Error source	RMS	surface error	[mm]
Main reflector panels manufacturing	0,07	0,07	0,07
Main reflector alignment (Photogr , Hologr , Hologr)	0,39	0,2	0,145

								0.5
	Quantity	Jan	Feb	Mar	Apr	May	Jun	0.5
	IWV	45	49	43	30	10	5	50th percentile
Monthly percentage	ILW	54	59	64	59	67	77	
probability (January-June):	τ (0.3)	100	100	100	100	100	100	
IWV <10 mm, T<0.15 Np	τ (1.4)	100	100	100	100	100	100	obaccit
	τ (6.7)	100	100	100	100	100	100	
	τ (10)	100	100	100	100	100	100	GE
	τ (15)	100	100	100	100	100	100	<u><u>8</u> 0.35</u>
	τ (18)	100	100	100	100	100	100	
	τ (22)	94	94	92	86	70	59	
	τ (22.12)	93	93	90	85	66	56	
	τ (22.23)	91	91	89	82	63	51	
	τ (23.69)	97	98	95	90	82	76	
	τ (23.72)	97	98	95	91	83	77	tigt st
Neeir Duffe Deiere 2011	τ (23.87)	98	98	96	92	85	81	
Nasir, Buffa, Deiana 2011	τ (30)	100	100	100	99	96	97	
	τ (42.82)	83	86	85	78	77	82	i ⊈
	τ (43.12)	81	85	83	76	75	80	
	τ (88.63)	47	48	49	35	17	12	
	τ (90.66)	46	47	48	34	17	11	
	τ (100)	34	35	35	25	9	6	Jan Feb Mar Apr May Jun Jul Aug Set Oct Nov Dec Months
								Monthly quartile plots for 100 GHz opacity at SRT

Evolution of protoplanetary disks seen through the eyes of new-generation high-resolution instruments, Rome 25-28 June 2018

Osservatorio Astronomico

di Cagliari

NA

SRT at high frequencies

Receiver	Freq [GHz]	Beam size [arcsec]
L-band	1.7	667
C-band	7.35	155
K-band	23	48
Q-band (under construction)	45	27
W-band	100	12