Protoplanetary disks seen through the eyes of new-generation high-resolution instruments - Rome, June 26, 2018

Revealing the evolution of disks at 0.01-10 au from high-resolution IR spectroscopy

VI 1

JWST

IR interferometry

(not included in this talk)

Dr. Andrea Banzatti

10 au

ALMA

IR spectroscopy

What happens in the "blind side"?

0.0

-0.5

-1.0

Pinilla et al 2018

N/MIR molecular spectroscopy to study inner disks

Wavelengths: ~2-40 micron (different ranges covered by different instruments)
Molecules: CO, H2O, OH, HCN, C2H2, CO2 (mostly, plus some other species)
Spectral Resolution: some very high (3 km/s), some only moderate (450 km/s) but large coverage
Science: structure (from gas kinematics), chemistry, evolution of planet-forming regions at < 10 au

A brief history of N/MIR molecular spectroscopy of planetforming regions

Najita, Carr, Pontoppidan, Salyk, Brittain, Fedele, Carmona, Banzatti, Doppmann, Blake, Mandell, Pascucci, Brown, Herczeg, van der Plas, Bast, Hein Bertelsen, ...

How to get spatial information at 0.01-10 au

High-res. CO spectra to study inner disks

Data: IR spectroscopy (VLT-CRIRES, IRTF-iSHELL) Resolution: high ($\Delta v \sim 3-15$ km/s) Sample size: > 50 disks, spanning evolutionary stages Goals: resolve gas kinematics and radial structure at < 5 AU, detect gas-depleted zones, measure gas temperature and density, reconstruct inner disk evolution phases

Several observing programs (mostly a LP by vDishoeck &Pontoppidan) CRIRES on VLT (8-m) ~30 nights of data (more than 24 papers published to date)

Part of the ro-vibrational spectrum of carbon monoxide (CO): 1.8 1.8 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.21

Banzatti et al. 2015a, 2017, 2018, Banzatti & Pontoppidan 2015

Gas temperature and evolution/depletion

Resolution: high ($\Delta v \sim 3-15$ km/s) 3.4 Sample size: > 50 disks, spanning evolutionary stages Goals: resolve gas kinematics and radial structure at < 5 AU, detect gas-depleted zones, measure gas temperature 3.2 and density, reconstruct inner disk evolution phases 3.0 ¹²CO v1 RATIO -> 2.8 NC vibrational vib.ex. temperature FWHM --> ⊢ 2.6 log emitting radius ¹²CO BC 2.4 2.2 The high-velocity gas is gone 2.0 (Banzatti & Pontoppidan 2015)

Data: IR spectroscopy (VLT-CRIRES, IRTF-iSHELL)

Intermezzo: the interesting case of EXLupi...

Water vapor evolution and chemical gradients

Data: IR spectroscopy (VLT-CRIRES, Spitzer-IRS)

Resolution: low + high ($\Delta v \sim 3-450 \text{ km/s}$)

Sample size: > 50 disks, spanning evolutionary stages

Goals: combined analysis of multiple molecular tracers (CO, H₂O, OH), to study the thermo-chemical structure and evolution

(Banzatti et al. 2017)

The powerful synergy of gas and dust tracers

Summary

Molecular spectroscopy at infrared wavelengths provides a unique probe of protoplanetary disks at $\sim 0.05 - 10$ au, complementary to imaging (limited to > ~ 5 au @ 140 pc)

By combining high spectral resolution (R = 25,000 -100,000), multiple molecules (CO, H₂O, OH), large samples (50-100 disks), and multiple disk tracers (gas, dust, winds), we are working our way towards obtaining a global view of the evolution of inner planet-forming disks.

An escalation of discoveries in recent years:

- 1) CO kinematics and excitation reveal the formation and evolution of inner disk cavities
- 2) as inner disks evolve, H₂O is depleted in the terrestrial planet zone
- 3) dust and molecular gas are depleted simultaneously, by planet-formation processes or disk winds (?)
- 4) next: links between complementary techniques, to link evolving inner disks and exoplanet populations.....

