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What happens in the “blind side”?

From Garufi et al. 2017, MSGR

Pinilla et al 2018
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Wavelengths: ~2-40 micron (different ranges covered by different instruments) 

Molecules: CO, H2O, OH, HCN, C2H2, CO2 (mostly, plus some other species) 

Spectral Resolution: some very high (3 km/s), some only moderate (450 km/s) but large coverage 

Science: structure (from gas kinematics), chemistry, evolution of planet-forming regions at < 10 au



A brief history of N/MIR molecular spectroscopy of planet-
forming regions

2008-2011: 
Water and organics 

discovered in inner disks

1990-2011: 
CO gas NIR emission 

probes Keplerian inner 
disks 

Mostly  
small sample sizes 

&/or 
low spectral resolution

Carr+ 2001

Carr & Najita 2008
(Salyk+ 2008)

Spitzer-IRS 
10-37 um 

R~700 
~100 disks

Keck-NIRSPEC 
1-5 um 

R~25,000 
~100 disks

Carr, Najita, Blake, Brittain, Salyk

Carr, Najita, Pontoppidan, Salyk, Fedele

2008-today:  
Large sample sizes (~100 disks) 

high spectral resolution (R = 75,000 - 100,000)

VLT-CRIRES (+) 
1-5 um 

R~100,000 
~100 disks

IRTF-ISHELL
1-5 um 

R~75,000 
>10 disks

VLT-VISIR 2.0 
10-13 um 
R~25,000 
~50 disks

Particularly promising:
combined datasets (wavelengths, tracers, molecules, samples) 

to obtain global view of evolving planet-forming regions

Some references: 
Najita, Carr, Pontoppidan, Salyk, Brittain, Fedele, Carmona, Banzatti, Doppmann, 
Blake, Mandell, Pascucci, Brown, Herczeg, van der Plas, Bast, Hein Bertelsen, …



CO

hot H2O cold H2O

organics: 
C2H2 HCN CO2

Molecular spectra 
from inner disks

10 16 22 284 wavelength (um)

(e.g. Carr & Najita 2008; Salyk et al. 2011; Banzatti et al. 2012, 2013, 2017)
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High-res. CO spectra to study inner disks

Banzatti et al. 2015a, 2017, 2018, Banzatti & Pontoppidan 2015

Data: IR spectroscopy (VLT-CRIRES, IRTF-iSHELL) 
Resolution: high (Δv ~ 3-15 km/s)  
Sample size: > 50 disks, spanning evolutionary stages 
Goals: resolve gas kinematics and radial structure at < 5 AU, 
detect gas-depleted zones, measure gas temperature and 
density, reconstruct inner disk evolution phases

Several observing programs 
(mostly a LP by vDishoeck 

&Pontoppidan) 
CRIRES on VLT (8-m) 

~30 nights of data 
(more than 24 papers 

published to date)

Part of the ro-vibrational spectrum of carbon monoxide (CO):

on face-on disk:

R

RATIO —> 
vibrational 
temperature

FWHM —> 
emitting 
radius



Jupiter’s orbit 
(~5 AU)

Data: IR spectroscopy (VLT-CRIRES, IRTF-iSHELL) 
Resolution: high (Δv ~ 3-15 km/s)  
Sample size: > 50 disks, spanning evolutionary stages 
Goals: resolve gas kinematics and radial structure at < 5 
AU, detect gas-depleted zones, measure gas temperature 
and density, reconstruct inner disk evolution phases
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Intermezzo: the interesting case of EXLupi…

(Banzatti et al. 2012, 2015a)



Water vapor evolution and chemical gradients

(Banzatti et al. 2017)

Data: IR spectroscopy (VLT-CRIRES, Spitzer-IRS) 
Resolution: low + high (Δv ~ 3-450 km/s)  
Sample size: > 50 disks, spanning evolutionary stages 
Goals: combined analysis of multiple molecular tracers (CO, H2O, OH), to study the thermo-chemical structure and evolution
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The powerful synergy of gas and dust tracers

(Banzatti, Garufi, 
Kama et al. 2018)
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Summary

Molecular spectroscopy at infrared wavelengths provides 
a unique probe of protoplanetary disks at ~0.05 - 10 au, 
complementary to imaging (limited to > ~5 au @ 140 pc) 

By combining high spectral resolution (R = 25,000 
-100,000), multiple molecules (CO, H2O, OH), large 
samples (50-100 disks), and multiple disk tracers (gas, 
dust, winds), we are working our way towards obtaining a 
global view of the evolution of inner planet-forming disks. 

An escalation of discoveries in recent years:  
1) CO kinematics and excitation reveal the formation and 

evolution of inner disk cavities 
2) as inner disks evolve, H2O is depleted in the terrestrial 

planet zone 
3) dust and molecular gas are depleted simultaneously, 

by planet-formation processes or disk winds (?) 
4) next: links between complementary techniques, to link 

evolving inner disks and exoplanet populations…..
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