Accretion variability in young, low-mass stars

Laura Venuti

Eberhard Karls Universität Tübingen, Germany Institut für Astronomie & Astrophysik Tübingen

Protoplanetary disks seen through the eyes of new-generation high-resolution instruments, Rome, June 26, 2018

Photometric variability: a long-asserted feature of young, low-mass stars

T TAURI VARIABLE STARS*

ALFRED H. JOY Mount Wilson Observatory Received June 9, 1945

ABSTRACT

Eleven irregular variable stars have been observed whose physical characteristics seem much alike and yet are sufficiently different from other known classes of variables to warrant the recognition of a new type of variable stars whose prototype is T Tauri. The distinctive characteristics are: (1) irregular lightvariations of about 3 mag., (2) spectral type F5-G5 with emission lines resembling the solar chromosphere, (3) low luminosity, and (4) association with dark or bright nebulosity. The stars included are

Short-to-mid-term variability surveys of young star clusters:

- NGC 1333 (1-2 Myr) -> 52% of sources are variable (Rebull et al. 2015)
- Orion Nebula Cluster (2 Myr) -> 61% of sources are variable (Morales-Calderon et al. 2011)
- NGC 2264 (3-5 Myr) -> 63-75% of sources are variable (Venuti et al. 2015)
- σ Ori (6 Myr) -> 69% of sources are variable (Cody & Hillenbrand 2010)

The variability rate increases to >70-80% among accreting/disk-bearing stars alone!

Artist's view of a young, active star

The star – inner disk region: magnetospheric accretion

Kurosawa & Romanova (2013)

- Axisymmetric
- Steady regime

- Non-axisymmetric
- Steady regime

- Non-axisymmetric
- Unsteady regime

Different accretion regimes: theoretical predictions

Kurosawa & Romanova (2013)

Macc in stable vs. unstable accretion regimes:

- stronger accretion in unstable regime;
- similar amplitudes of variability on rotational timescales;
- stochastic changes in Macc on timescales of hours in the unstable regime.

Simulated light curves:

- smooth and overall periodic (stable regime)
- irregular, short-term stochastic variations (unstable regime)

A comprehensive view of YSOs variability

From the ground: Herbst et al. 1994:

All of the profiles are observed among accreting/disk bearing stars in a single region

YSO variability vs. disk/accretion properties

M_{acc} and variability: the case of NGC 2264

M_{acc} measurements:

- *u*-band excess measured relative to WTTS
- UV excess -> L_{acc} -> M_{acc}
- detection limits estimated from the scatter of WTTS colors around ref. sequence
- *M_{acc}* measured for 240 CTTS

M_{acc} – M relationship:

- statistical correlation to >5σ (Kendall's τ test)
- significant spread (up to 2 dex) in M_{acc} at any given stellar mass

Can the scatter be due to accretion variability?

M_{acc} and variability: the case of NGC 2264

- 1. Bursters (Stauffer+2014):
 - stochastic accretion
 - $M_{acc} \approx 7 \times 10^{-8} M_{\odot}/yr$
 - match predictions for unstable regimes

(Kulkarni & Romanova 2008)

- **1. Bursters** (Stauffer+2014):
 - stochastic accretion
 - $M_{acc} \approx 7 \times 10^{-8} M_{\odot}/yr$
 - match predictions for unstable regimes
 (Kulkarni & Romanova 2008)
- 2. Variable extinction

(McGinnis+2015):

- circumstellar occultation
- $M_{acc} \approx 2x10^{-8} M_{\odot}/yr$
- periodic -> AA Tau's

- 1. Bursters (Stauffer+2014):
 - stochastic accretion
 - $M_{acc} \approx 7 \times 10^{-8} M_{\odot}/yr$
 - match predictions for unstable regimes
 (Kulkarni & Romanova 2008)
- 2. Variable extinction

(McGinnis+2015):

- circumstellar occultation
- $M_{acc} \approx 2x10^{-8} M_{\odot}/yr$

- periodic -> AA Tau's

- **3.** Hot-spotted objects:
 - dominated by spots

```
- M_{acc} \approx 10^{-8} M_{\odot}/yr
```


Timescales of accretion variability

~1 year-long variability in NGC 2264:

- Dec. 2010: u-band mapping
- *Feb. 2012*: 2-week u-band monitoring
- comparison between the weeklong photometry range and single-epoch data one year apart
 - Accreting stars more variable than non-accreting stars
 - Similar behaviors for the two groups around the equality line on the diagram
 - The year-long variability is statistically consistent with the week-long variability

Timescales of accretion variability

~10 years-long variability in NGC 2264

- *Rebull et al. (2002)*: single-epoch survey of accretion from U-excess
- Venuti et al. (2014): mean L_{UV} and
 L_{UV} variability on week timescales

L_{UV} measured at distance of years are typically consistent within the mid-term (days) variability bars

Timescales of weeks dominate the picture of variability up to baselines of several years

Timescales of accretion variability

Adapted from Costigan et al. 2014, MNRAS 440

Accretion process globally stable on a timescale of years, although with more erratic behavior on the short term (discrete accretion events) [Grankin et al. 2007, Venuti et al.

2015

Distinct M_{acc} regimes: link to M_{acc} evolution?

- Strongest M_{acc} associated with earlier evolutionary stages
- (Steady?) decrease in M_{acc} with age
 - implications for the dynamics and timescales of disk evolution and planet formation/migration

What about the time evolution of M_{acc} variability?

K2 survey of young clusters: YSOs variability between 1 and 10 Myr

Cody & Hillenbrand 2018

80 day-long monitoring of:
 YSOs in Taurus

- 1503 III Taulus
- ρ Ophiuchi (1-3 Myr)
- Lagoon Nebula (2 Myr)
- Upper Scorpius (5-10 Myr)
- Statistical mapping of hourto-month YSOs variability across disk lifetimes
- Ancillary observations to assess accretion/disk properties, binarity etc.

VARIABILITY TYPES AMONG YOUNG DISK-BEARING STARS

Morphology class	Oph	Sco	Sco/Oph composite	NGC 2264 (3-5 Myr)
	%	%	%	%

Categories based on periodicity and stochasticity							
All Bursters	14^{+5}_{-2}	13^{+3}_{-2}	14^{+2}_{-2}	13^{+3}_{-3}			
Aperiodic symmetric (Stochastic)	12^{+4}_{-3}	6^{+2}_{-1}	8^{+2}_{-2}	13^{+3}_{-2}			
Quasi-periodic symmetric	20^{+5}_{4}	29^{+3}_{2}	26^{+3}	17 ± 3			
Aperiodic dippers	9^{+5}_{-2}	18^{+3}_{-2}	16^{+2}_{-2}	11^{+3}_{-2}			
Quasi-periodic dippers	14^{+5}_{-3}	$18^{+\bar{3}}_{-2}$	17^{+2}_{-2}	10.5^{+3}_{-2}			
Periodic symmetric	6^{+4}_{-2}	7^{+2}_{-2}	7^{+1}_{-2}	3^{+2}_{-1}			
Other Categories							
Multiperiodic	7^{+4}_{-2}	4^{+2}_{-1}	5^{+2}_{-1}	1^{+2}_{-1}			
Long timescale	$8^{+\bar{4}}_{-2}$	$0^{+\bar{2}}_{-0}$	$3^{+\bar{1}}_{-1}$	$1^{+\bar{2}}_{-1}$			
Unclassifiable	$2^{+\bar{3}}_{-0}$	0^{+2}_{-0}	1^{+1}_{-1}	11^{+3}_{-2}			
Non-variable	$6^{+\bar{4}}_{-2}$	$3^{+\bar{2}}_{-1}$	$4^{+\bar{1}}_{-1}$	19 ± 3			

Preliminary indications:

- % of stochastic light curves decreases with age, while % of quasi-periodic increases;
- % of dipper light curves increases with age;
- no apparent changes in the percentage of burster light curves with age.

TWA: accretion in very low-mass stars and at the upper end of disk lifetimes

- X-shooter survey of accreting stars in TW Hydrae association
- 14 sources with disk observed
- survey complete down to \sim 0.02 M $_{\odot}$
- multi-epoch observations already acquired for 5/14 sources
- Analysis ongoing: Venuti, Stelzer, Alcalá, Manara, Frasca
- Age-dependent variability: TWA vs. Lupus (multi-epoch data available for ~10% of accreting stars)

Preliminary indications:

- in the lower mass regime, same range in M_{acc} as found, with the same method, in younger regions (Lupus, Chamaeleon I; see also talk by C. Manara)
- distinct accretion timescales in different mass regimes?
- different $M_{\star} M_{acc}$ behavior at the lowest masses?

Conclusions/perspectives

- Variability monitoring of accreting stars crucial to probe the structure of the inner disk region and the dynamics of the star-disk interaction
- Two distinct scenarios of disk accretion: *stable* vs. *unstable*, reflecting in "regular"/quasi-periodic vs. burster/stochastic light curves
- Unstable regimes translate to erratic short-term behavior, but in both scenarios the accretion process appears globally stable on the longer term (month-to-year M_{acc} variability dominated by week-long timescales)
- The ratio of stochastic to quasi-periodic variables tends to decrease with age, but "bursters" are similarly represented in clusters of different ages
- Different timescales for M_{acc} evolution may pertain to distinct stellar mass regimes, with lower-mass stars (< 0.3 M_☉) exhibiting comparable levels of accretion between < 3 and 10 Myr
- Assessing the time evolution of M_{acc} variability is key to test the evolving dynamics of star-disk interaction across protoplanetary disk lifetimes