

lel arps-N

Fundación Galileo Galilei - I Telescopio Nazionale Galileo

exiaps

KEELE

Search and characterization of young planets with GAPS

Protoplanetary disks Osservatorio Astronomico di Roma, Monte Porzio Catone (RM), Italy 25 - 28 June 2018

GAPS Global Architecture of Planetary Systems

ATTORNAL DESTINATION

Collaboration among ~80 Italian scientists (+ external collaborators) in the exoplanets field since 2012

 Long-term radial velocities survey with HARPS-N@TNG
 Search and Characterization of the architectural properties of planetary systems

Objectives

- Frequency of exoplanets around M stars, metal poor stars, stars in open clusters
 Search for additional low mass companions
- Characterization through Rossiter-McLaughlin effect and Asteroseismology/SPI (star-planet interaction) and orbital refinement of known systems

GAPS A coordinated and solid Italian community for the Exoplanets study

 17 "GAPS" papers
 12 papers from collaboration (HADES, H-N GTO, ...)
 Many others in preparation
 Results in line with previous RV surveys

GAPS 5 years of GAPS observations: Quick look to the results

- □ 1st binary with **both stars** hosting planets
- □ 1st planetary system in **OC** star
- 3 long period giant planets with close companion (HJ or SE)
- Super Earth system around M dwarf
- Giant companion around **giant star** (GIARPS ante litteram)
- **SE** with one **temperate Saturn** + cold **Jupiter** mass companions
- 3 giant planets in open clusters

Long period planet around metal poor star

Stars with Metal poor M dwarfs Planet Field G frequency planets dwarfs stars P<50d 38.8±7.1 5.9 ± 6.6 < 8.420.0±7.2 $M < 30 M_{F}$ P<100d 47.9±8.5 11.7 ± 8.0 20.0±7.2 16.6±11.8 $M < 30 M_{F}$

To be updated!!

GAPS 5 years of GAPS observations: Quick look to the result

1st binary with both stars hosting
 1st planetary system in
 3 long period

what is the origination of this variety?

	0	mets	metal poor stars	M dwarfs	
• E	<u>۲</u> /.1	5.9±6.6	<8.4	20.0±7.2	_
P<100d M<30M _E	47.9±8.5	11.7±8.0	16.6±11.8	20.0±7.2	

To be updated!!

Planets migration: hot Jupiters

Smooth disc migration

small eccentricities
 spin-orbit alignments

High-eccentricity migration

 circular orbits + short periods/ eccentric orbits + long periods
 spin-orbit (mis)alignments

Planets migration: hot Jupiters

GAPS The opportunity of

Planet detection

Young stars are very active: Simultaneous VIS-NIR observations allow to disentangle between RV "jitter" and Keplerian RV modulations

Characterization of planets atmosphere Huge spectral range to search for the molecular compound of hot giant planets

Observables:

Planet frequency around young stars + Orbital parameters to understand how do the planet migrated
 Atmospheric composition to understand where do the planets formed

Observables:

Planet frequency around young stars + Orbital parameters to understand how do the planet migrated
 Atmospheric composition to understand where do the planets formed

GAPS GAPS2 Young Objects program Objectives and strategy

- Monitoring young (< 20 Myr) and intermediate age (< 700 Myr) stars to search for hot Jupiters (HJ) in formation or at the early stage of their evolution within the timescales of migration
- Confirm/Retract the apparent higher frequency of HJ around very young stars (age < 10 Myr, Donati+2016, Yu+2017)
- At least 50 epochs for each target to retrieve Keplerian signals up to 5-10 times lower than the stellar activity jitter (possible with Gaussian processes)

GAPS Target selection criteria

- 1. Planet candidates program
- Discovery program
 Intermediate age: robust data treatment
 Young: exploration of strategy and techniques
 - RV archives
 - known rotation period
 - "Small" vsini < 20 km/s

3. TESS Candidates (>2019)

Taurus Cepheus Hyades Coma Upper Sco Leonis Ursa Major **AB** Doradus GAPS

The Young sample

Star	mag	Mass M_{\odot}	age	vsini [km/s]	P _{rot} [d]	Notes
YO01 MO WTTS Taurus	V12.1 H8.6	1	2 Myr	30	2.7	Giant Planet claimed
YO15 K0 CTTS Upper Sco	V12.6 H6.7	0.9	~3 Myr	11	6.8	Giant Planet claimed
YO16 K3 WTTS Upper Sco	∨12.1 H8.5	0.78	5-10 Myr	10	5.5	

very preliminary results...

YO01: Planet candidate in Taurus

Not optimal sampling

Not enough for a clear detection of the planet signal

New observations foreseen in the next season

HARPS-N RV scatter: ~400 m/s GIANO-B RV scatter: ~950 m/s

GAPS

YO15: strong indication of accretion (Upper Sco)

High variability of the main accreting diagnostics in ~ one week

$$\Delta \log M_{\rm acc}$$
 = 0.3 dex for 1 M _{\odot}

Consistent with the variations in the CTTS (see discussion with J. Alcala' + talk L. Venuti)

GAPS YO15: discarded for planet search

GAPS

YO16 (WTTS in Upper Sco)

No accretion features detected

HARPS-N:

RV scatter: 236.2 m/s RV mean error: 4.4 m/s **GIANO-B:** RV scatter: 130.9 m/s

RV mean error: 89.8 m/s amplitude ratio:

VIS/NIR = 1.8

Too few and sparse RV data to search for rotation period

HARPS-N RV scatter from residuals: 24 m/s

Comparison with YSO in Lupus

GAPS

GAPS2 YO Perspectives

- After 3 semesters (1 with a "short" Pilot program + 2 as large program) GAPS2 will report to INAF to confirm the LP status (4 more years)
- More data are needed to enrich our time series
- ESO LP with HARPS submitted to complement YO
- Sinergy with GAIA DR2 (stellar parameters, membership)
- Future collaboration with the community working on protoplanetary disks??

Thank you!