# THE DISPERSAL OF PLANET-FORMING DISCS

#### COLLABORATORS:

- BARBARA ERCOLANO
- JAMES OWEN
- TOMMASO GRASSI
- MICHAEL WEBER
- LISA WÖLFER
- LÁSZLÓ SZŰCS
- KRISTINA MONSCH

A NEW GENERATION OF X-RAY PHOTO-EVAPORATION MODELS

GIOVANNI PICOGNA - LMU MUNICH OSSERVATORIO ASTRONOMICO DI ROMA - JUNE 27TH, 2018

## 1. DISC WINDS

DRIVERS OF ANGULAR MOMENTUM AND MASS LOSS



### DISC EVOLUTION



#### Extract angular momentum



Bai et al., 2016



### DISC DISPERSAL



# Mass-loss rate becomes greater than accretion rate after few Myr



# 2. TRANSITION DISKS

BASIC CONCEPTS



### DEFINITION



- firstly defined
  observationally (Strom+, 1989)
- stars with significantly reduced NIR excess emission in their SED
- the fraction of protoplanetary discs that are Transition Discs is ~13% (Luhman+, 2010)





### FORMATION



Type I - X-F(E)UV photoevaporation (i.e. see Elisabetta's talk)

• when photo-evaporation opens a gap in the disc, it removes it on a short time-scale the disc



Alexander et al., 2014



### FORMATION



Type II - Planetary (binary) sculpting (i.e. Daniel Price's view )

• systems of 3–6 giant planets are needed, binary (misaligned) companion





### DATASET





# 3. RESEARCH UNIT

A TASK FORCE TO UNDERSTAND TDS.



#### PLANET FORMATION WITNESSES AND PROBES: TRANSITION DISCS



**A: Observations B:** Disk Dissipation & Chemistry 1. solid/gas evolution in discs (PI: Testi) see next slide 2. relation accretion rate/ X-ray activity (PI: Preibisch) 1. trapping the dust in TDs 1. TDs and planetary (PI: Birnstiel) systems (PI: Kley) 2. dust entrainment in 2. origin of nonphoto-evaporative winds axysimmetric features in TD (PI: Ercolano) (PI: Duellemond) C: Dust Physics & **D:** Planet-disk **Planet Formation** interactions



### PROJECT B



- radiationhydrodynamics models of photoevaporative discs + chemistry (PI: Ercolano)
- 2. astrochemistry in the atmospheres and winds of TDs (PI: Caselli)





### TEMPERATURE



lgas



### MOCASSIN

#### (Radiative Transfer)

**NEW!** 



Picogna et al., in submission



### PARAMETER SPACE



| PARAMETER        | VALUE                                   |
|------------------|-----------------------------------------|
| CODE             | PLUTO<br>(MIGNONE+2007)                 |
| RADIAL RANGE     | 0.33-1000 AU                            |
| VERTICAL RANGE   | 0.005-PI/2                              |
| LOG(LX)          | 28.3,29.3,29.8,30.3,<br>31.3,31.8 ERG/S |
| INNER HOLE       | 0,4.6,14.1,21.2,30.3 AU                 |
| CARBON DEPLETION | C/3, C/10, C/100                        |
| STAR MASS        | 0.3 - 2.0 SOLAR<br>MASSES               |



### RESULTS



#### Disc without hole



density

temperature

radial velocity

Picogna et al., in submission



RESULTS



#### Disc with 15 AU hole



Picogna et al., in submission



### WIND PROFILES



Total Mass-loss rate is more than 2 times larger than in the old prescription:  $> 2*10^{(-8)}$  solar masses/year



Picogna et al., in submission



### WIND DEPENDENCE



31.5

32.0

-6.0Cumulative Mass-loss rate -6.5 -7.0 $\log_{10}(M) [M \odot/yr]$ -7.5 -8.0 -8.5 -9.0 -9.5 -10.0 ∟ 28.0 29.0 28.5 29.5 30.0 30.5 31.0  $\log_{10}(L_X)$  [erg/s]

Picogna et al., in submission

X-ray luminosities



### WIND DEPENDENCE





Cumulative Mass-loss rate

Picogna et al., in submission

Hole radius

# 4. OBSERVATIONAL CONSTRAINTS



### OBSERVABLES







### DISC DEMOGRAPHICS



- we applied the wind profiles to a <u>1D viscous</u> <u>evolution code</u> (SPOCK)
- we run a parameter space analysis finding the probability to observe a transition disc with a specific accretion rate and inner radius

Picogna et al., in submission





### EMISSION LINES





[NeII] purple

[OI] yellow

Picogna et al., in submission



### METAL DEPLETION



- Carbon and Oxygen seems to be depleted in the outer disc due to freezout (Anna/Cecile's talk)
- C/3 extend the area affected by disc photoevaporation



Wölfer et al., in preparation



### A NEW DATABASE





Monsch et al., submitted



### CONCLUSIONS



- there is not a clear cut between Transition Discs (TD) explainable by photo-evaporation and planet sculpting
- TDs contain a wide range of different protoplanetary discs not exaplainable by a <u>single model</u>
- new improved models predict a <u>higher mass loss rate</u>
- this database of hydro models will be the backbone for our Research Unit on TDs
- stay tuned (more info at <u>transitiondiscs.com</u>)