Non-spherical dust dynamics in protoplanetary disks: the effects of particle nonsphericity on the evolution timescales

Stavro L. Ivanovski ${ }^{1,2}$,
Diego Turrini ${ }^{1,3}$, Maria Teresa Capria ${ }^{1,2}$, Danae Polychroni ${ }^{1,3}$, Alessandra Rotundi ${ }^{2,1}$, Vincenzo Della Corte ${ }^{2,1}$
IINAF - Institute for Space Astrophysics and Planetology,Area Ricerca TorVergata,Via Fosso del Cavaliere I00, Rome 00I33, Italy
${ }^{2}$ Università degli Studi di Napoli Parthenope, Dip. di Scienze e Tecnologie, CDN IC4, Naples 80I43, Italy
${ }^{3}$ Departamento de Fisica, Universidad de Atacama, Copayapu 485, Copiapo, Chile

HD163296: A Case Study for Late Disks

Continuum flux density [Jy/beam]

5 Mvr old circumstellar disk around a star of 2.3 solar masses.

Three identified gaps in the dust, two in the aas (Isella et al. 2016).

Proposed cause: 3 qiant planets of $0.1,0.3$, 0.3 Jovian masses (with large uncertainties) at 60, 100 and 160 au (Isella et al. 2016).

Dust gaps in the circumstellar disc of HD163296 imaged with ALMA (Isella et al. 2016)

HD163296: Current State?

Dvnamical excitation of the planetesimal disk of HD 163296 caused by the formation of its three giant planets and enhancement of the olanetesimal impact velocities, resulting in collisional regeneration of the dust population (Turrini et al., in prep.) .

Courtesy: D. Turrini

Stavro L. Ivanovski stavro.ivanovski@iaps.inaf.it

Dynamical Excitation and Planetary Masses

Courtesy: D. Turrini

Possible qualitative match between the oosition and size of the reaion of peak dust production due to the excited impact velocities and a estimated overabundance of dust in HD163296

Reconstructed gas-to-dust ratio in HD163296 and comparison with theoretical expectations (Isella et al. 2016)

Dust evolution in protoplanetary disks

\checkmark Epstein Regime of drag: drag due to molecular collisions
when the size of the particle is less compared to the mean free path of molecules in the gas (i.e. motion in rarefied gas field)
\checkmark Stokes Regime of drag: fluid drag via molecular viscosity
for particles larger than about the mean free path of the gas molecules, a flow structure develops around the dust particle and the drag is governed by continium flow physics.

SUPERSONIC FLOW: Stokes Regime of drag

Aerodynamics of dust particles in protoplanetary disks: spherical (review)

$$
F_{D}=-\frac{1}{2} C_{D} \cdot \pi a^{2} \cdot \rho v^{2}
$$

$$
\text { Armitage, P., Lect. Notes, } 2017
$$

Stokes Regime ($a \gg \lambda_{\text {mnfp }}$):

Epstein Regime ($\mathrm{a} \ll \lambda_{m n f p}$):

$$
\mathrm{Re}=\frac{2 a v}{\nu} \quad \begin{array}{ll}
C_{D}=24 \mathrm{Re}^{-1} & \mathrm{Re}<1 \\
C_{D}=24 \mathrm{Re}^{-0.6} & 1<\mathrm{Re}
\end{array}
$$

$a<\frac{9}{4} \lambda$,	$C_{D}=\frac{8}{3} \frac{\bar{v}}{v}, \quad \bar{v}=(8 / \pi)^{1 / 2} c_{s}$
$t_{\text {fric }}$	$=\frac{m v}{\left\|F_{D}\right\|} . \quad t_{\text {fric }}=\frac{\rho_{d}}{\rho} \frac{a}{\bar{v}}$.

$$
a<\frac{9}{4} \lambda, \quad C_{D}=\frac{8}{3} \frac{\bar{v}}{v}, \quad \bar{v}=(8 / \pi)^{1 / 2} c_{s}
$$

Adopting conditions appropriate to 1 AU within the disk, $\rho=5 \times 10^{-10} \mathrm{~g} \mathrm{~cm}^{-3}-24 \times 10^{5} \mathrm{cms}^{-1}$ and $\rho_{d}=$ $3 \mathrm{~g} \mathrm{~cm}^{-3}$ we obtain $t_{\text {fric }} \approx 2.5 \mathrm{~s}$ Small particles are thus very tightly coupled to the gas.

Define dimensionless stopping time, and for MMSN disk at midplane:

$$
\tau_{s} \equiv \Omega t_{\mathrm{stop}}=\max \left[4.4 \times 10^{-3} a_{\mathrm{cm}} r_{\mathrm{AU}}^{3 / 2}, 1.4 \times 10^{-3} a_{\mathrm{cm}}^{2} r_{\mathrm{AU}}^{-5 / 4}\right]
$$

Epstein Stokes

Key point message: The stopping(friction) time depends not only on the size but also of the dust grain shape and composition in Epstein regime.

Fig. 1.- Illustration of the structure, grain evolution processes and observational constraints for protoplanetary disks. On the left side we show the main grain transport and collision mechanism properties. The different lengths of the arrows illustrate the different velocities of the different grains. On the right hand side, we show the areas of the disk that can be probed by the various techniques. The axis shows the logarithmic radial distance from the central star. The horizontal bars show the highest angular resolutions (left edge of the bars) that can be achieved with a set of upcoming facilities and instruments for at the typical distance of the nearest star forming regions.

Vertical dust settlement

Active forces: stellar gravity and gas drag, no gas pressure

$$
\begin{gathered}
\left|F_{\text {grav }}\right|=m \Omega_{K}^{2} z \\
\left|F_{D}\right|=\frac{4}{3} \pi a^{2} \bar{v} \rho v . \\
v_{\text {settle }}=\left(\frac{\Omega_{K}^{2}}{\bar{v}}\right) \frac{\rho_{d}}{\rho} a z . \\
t_{\text {fric }}=\frac{\rho_{d}}{\rho} \frac{a}{\bar{v}} .
\end{gathered}
$$

Large grains [m]: vertical damped oscillations Small grains [$\mu \mathrm{m}$ to cm]: terminal velocity $\mathrm{v}_{\text {settle }}$
settling timescale τ_{s} settling timescale $\sim 1 / \tau_{s}$
$\tau_{s} \equiv \mathbf{\Omega k}_{\mathbf{k}}$ tric

Stavro L. Ivanovski stavro.ivanovski@iaps.inaf.it

Gravity in vertical dust settlement

From the equation of vertical hydrostatic equilibrium and Keplerian angular velocity

Armitage, P., Lect. Notes, 2017

$$
\begin{aligned}
\left|F_{\mathrm{grav}}\right| & =m \Omega_{K}^{2} z \\
\left|F_{D}\right| & =\frac{4}{3} \pi a^{2} \bar{v} \rho v
\end{aligned}
$$

FIG. 10 Geometry for calculation of the vertical hydrostatic equilibrium of a circumstellar disk.

Gravity

$$
F_{\text {grav }}=m \frac{G M_{\text {small_body }}}{d^{2}} \quad F_{\text {grav_disk }}=m \frac{G M_{\text {star }}}{r^{3}} \mathrm{~d} \quad \mathrm{~d}=\mathrm{z}=\tan \Theta \mathrm{r}
$$

Note: The effects of turbulence are ignored and the disk is assumed to be entirely quiescent.

Dust dynamics in cometary environment and how this knowledge can be utilized in protoplanetary disks

The first non-spherical dust dynamical code in cometary science
Ivanovski + 2017 (Icarus, 282, 333-350)
TRAJECTORY OF A SPHERICAL GRAIN
Trajectories of ASPHERICAL body (isotropically distributed orientation)

Distance
Distance (km)

The model and the radial gas flow approximation

Ivanovski + 2017 (Icarus, 282, 333-350)

The motion of the center of mass of dust grain is given by:
$m_{\mathrm{d}} \frac{\mathrm{d}^{2} \boldsymbol{r}}{\mathrm{~d} t^{2}}=m_{\mathrm{d}} \frac{\mathrm{d} \boldsymbol{v}_{\mathrm{c}}}{\mathrm{d} t}=\boldsymbol{R}$
If we assume the motion of the dust under aerodynamic and gravitational forces, for the resulting vector and the torque of external forces acting on the nonsublimating grain we obtain

$$
\begin{aligned}
\boldsymbol{R} & =\boldsymbol{F}_{\mathrm{g}}+\boldsymbol{F}_{\mathrm{a}} \\
& \equiv-G \frac{M_{\mathrm{N}} m_{\mathrm{d}}}{r^{3}} \boldsymbol{r}-\int\left(\boldsymbol{n} \boldsymbol{n}+\tau\left[\left(\boldsymbol{v}_{\mathrm{r}} \times \boldsymbol{n}\right) \times \boldsymbol{n}\right] /\left|v_{\mathrm{r}}\right|\right) \mathrm{d} s, \\
\boldsymbol{M}_{c} & =\boldsymbol{M}_{\mathrm{g}}+\boldsymbol{M}_{\mathrm{a}} \\
& \equiv-G M_{\mathrm{N}} \rho_{\mathrm{d}} \int \frac{\boldsymbol{l} \times \boldsymbol{r}}{r^{3}} \mathrm{~d} v-\int \boldsymbol{l} \times\left(p \boldsymbol{n}+\tau\left[\left(\boldsymbol{v}_{\mathrm{r}} \times \boldsymbol{n}\right) \times \boldsymbol{n}\right] /\left|v_{\mathrm{r}}\right|\right) \mathrm{d} s
\end{aligned}
$$

Stavro L. Ivanovski stavro.ivanovski@iaps.inaf.it

The model : different velocities due to the grain shape

The mass and the principal moments of inertia for an ellipsoid of revolution are:

$$
\begin{equation*}
m_{d}=\frac{4}{3} \pi a b^{2} \tilde{\rho} \tag{2}
\end{equation*}
$$

$I_{z z}=\frac{2}{5} m_{d} b^{2} ; \quad I_{x x}=I_{y y}=\frac{1}{5} m_{d}\left(a^{2}+b^{2}\right)$
where $\tilde{\rho}$ is the dust specific mass $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ and z is the axis of revolution of the ellipsoid.

Ivanovski + 2017 (Icarus, 282, 333-350)

Stavro L. Ivanovski stavro.ivanovski@iaps.inaf.it

Aerodynamics of dust particles in protoplanetary disks: non-spherical (review)

For non-spherical grain:

- drag force \mathbf{D} (the aerodynamic force component parallel to the gas velocity relative to the grain) but also
- lift force L (the transverse aerodynamic force component)
- torque

Dimensionless aerodynamic coefficients - the drag CDand lift CL :

$$
C_{D}=\frac{D}{1 / 2 \rho V_{r}^{2} S} \quad ; \quad C_{L}=\frac{L}{1 / 2 \rho V_{r}^{2} S}
$$

where $V r=V g-V d$ is the gas-grain (center of mass) relative velociity vector, ρ is the gas mass density, $\rho V_{r} 2 / 2$ is the dynamic pressure, and S is a shape-dependent characteristic cross-section.

For the torque $M a$ - the dimensionless aerodynamic torque coefficient $C M$

$$
C_{M}=\frac{M_{a}}{1 / 2 \rho V_{r}^{2} S A}
$$

where A is a shape-dependent characteristic linear dimension of the grain.

Rotational motion in cometary atmosphere
Ivanovski + 2017 Icarus, Ivanovski + 2017 MNRAS

Terminal speeds of spherical and non spherical particles

\checkmark Spheroids with aspect ratio k will change the tric k times. Therefore the coupling of the mmsized particles can occur in timescales strongly dependent of the grain shape.
\checkmark For HDI63296: of $\mu \mathrm{m}$ sized $\sim \mathrm{cm} / \mathrm{s}$, still on-going checks and running simulations for mm sized particles.

Scaling laws -> from comets to protoplanetary disks

while for rotational motion is:
$\frac{Q_{g}}{\sqrt{b^{5} \tilde{\rho}}}=$ const.

Ivanovski et al. 2017 (Icarus, 282, 333-350)

Summary

\checkmark Revise the timescales of the dimensionless stopping time and the settling timescale in the vertical settling phenomena in disks in terms of non spherical particles.
\checkmark A non-spherical cometary dust model can be used to simulate the dust motion in protoplanetary disks.
\checkmark The model is capable to identify particle rotation and to compute the rotational frequencies of the particles.
\checkmark The model determines the bias that the spherical approximation could introduce in simulations of protoplanetary disk.

Some Future Work

\checkmark Parametric study on the dynamical properties of the second generated dust in HD163296 when assuming the 3 giant planets masses. The influence of different dust sizes and initial dust speeds.
\checkmark Time of accumulation and fluence of trace-back particles in the gaps of the disk.

