Propagating relativistic jets into the ISM/ICM V. Antonuccio-Delogu - INAF/OA Catania - ITALY S. Cielo - IAP, Paris - FRANCE

Propagating relativistic jets into the ISM/ICM

V. Antonuccio-Delogu - INAF/OA Catania - ITALY S. Cielo - IAP, Paris - FRANCE

• <u>Title</u>: Mechanical feedback and backflows in early-type galaxies.

Propagating relativistic jets into the ISM/ICM

V. Antonuccio-Delogu - INAF/OA Catania - ITALY S. Cielo - IAP, Paris - FRANCE

galaxies.

jet-star forming clouds interactions.

• <u>Title</u>: Mechanical feedback and backflows in early-type

• <u>Science</u>: Study of the physical mechanisms underlying

Bologna, November 30th, 2017

Propagating relativistic jets into the ISM/ICM

V. Antonuccio-Delogu - INAF/OA Catania - ITALY S. Cielo - IAP, Paris - FRANCE

galaxies.

• <u>Science</u>: Study of the physical mechanisms underlying jet-star forming clouds interactions

• <u>Code</u>: *FLASH*: Adaptive Mesh Refinement, xyz-blocks, N³ cells/block Physics: Rad. cooling, Self-gravity, Star formation and feedback (SN), DM halo, Central BH

• <u>Title</u>: Mechanical feedback and backflows in early-type

Bologna, November 30th, 2017

Scalings

Scalings

ed/Black: KNL with l_{r,max}=14 and 11. Blue: BRD

Scalings

ed/Black: KNL with l_{r,max}=14 and 11. Blue: BRD • Linear scaling up to $N_{task} \sim 12000$

Scalings

Red/Black: KNL with l_{r,max}=14 and 11. Blue: BRD • Linear scaling up to $N_{task} \sim 12000$ • We usually run with $N_{task} \sim 2500 - 4500$

Scalings

Just ONE scientific result: X-ray cavities

Just ONE scientific result: X-ray cavities Re-orienting jets: multiple jets launched at different angles e.g. because of tidally-induced disc re-orientation due to minor mergers

Run 00 00, 600 kpc, x direction

Run 00 30, 600 kpc, x direction

Run 20 30, 600 kpc, x direction

Just ONE scientific result: X-ray cavities Re-orienting jets: multiple jets launched at different angles e.g. because of tidally-induced disc re-orientation due to minor mergers

Run 00 00, 600 kpc, x direction

Run 00 30, 600 kpc, x direction

Run 20 30, 600 kpc, x direction

Perseus cluster, Chandra/ACIS-I 0.5 - 2 keV, 7hrs (Fabian et al 2001)

Just ONE scientific result: X-ray cavities Re-orienting jets: multiple jets launched at different angles e.g. because of tidally-induced disc re-orientation due to minor mergers

Run 0030, central 200 kpc, 52 Myrs, 4 jets episodes (Cielo et al., MNRAS subm., 12/2017)

Perseus cluster, Chandra/ACIS-I 0.5 - 2 keV, 7hrs (Fabian et al 2001)

Numerical problem: Setting the disc

Numerical problem: Setting the disc • The *disc* around the BH is the first structure the jet sees.

Numerical problem: Setting the disc • The *disc* around the BH is the first structure the jet sees. • Made of cold gas ($T \sim 10^{4-5}$ K) and stars.

Numerical problem: Setting the disc

- Made of cold gas ($T \sim 10^{4-5}$ K) and stars.
- Very unstable numerically: initial gas-stellar systems heavily subject to RT and heating instabilities:

X-Axis (x10^21)

• The *disc* around the BH is the first structure the jet sees.

user: cielo Mon Oct 30 14:02:41 2017

Numerical problem: Setting the disc • Way out: <u>self-consistent</u> build-up of the gas-star accretion disc

Numerical problem: Setting the disc • Way out: <u>self-consistent</u> build-up of the gas-star accretion disc

96.0 Myr 10x10 kpc

2

Pseudocolor Var: Log Number Density H/cc 0 -1

Density

3

Numerical problem: Setting the disc

• Way out: <u>self-consistent</u> build-up of the gas-star accretion disc

10x10 kpc 96.0 Myr

Pseudocolor Var: Log Number Density H/cc 0 -1

> 96.0 Myr 10x10 kpc

2

6

6

3

Pseudocolor Var: Log Temperature / K Density

Temperature

Numerical problem: Setting the disc

• Way out: <u>self-consistent</u> build-up of the gas-star accretion disc

10x10 kpc 96.0 Myr

Pseudocolor Var: Log Number Density H/cc 0

> 10x10 kpc 96.0 Myr

2

6

6

3

Pseudocolor Var: Log Temperature / K Temperature

Density

Bologna, November 30th, 2017

• Both gas and stars are <u>stable</u>.

Usage of ICT resources

• These <u>Numerical Experiments</u>^{*} have for the moment consumed 1103130/3000000 assigned hrs., i.e. 36.8% since 09/2017

* Simulations: Procedures aiming at reproducing natural phenomena in their full complexity

Usage of ICT resources

• Most time spent in generating a stable disc (~ 23% of the consumed time)

Only problems:

* Simulations: Procedures aiming at reproducing natural phenomena in their full complexity

Usage of ICT resources

• These <u>Numerical Experiments</u>^{*} have for the moment consumed 1103130/3000000 assigned hrs., i.e. 36.8% since 09/2017

• Most time spent in generating a stable disc (~ 23% of the consumed time)

• Only problems: 1. Frequent service interruptions on MARCONI

* Simulations: Procedures aiming at reproducing natural phenomena in their full complexity

Usage of ICT resources

• These <u>Numerical Experiments</u>^{*} have for the moment consumed 1103130/3000000 assigned hrs., i.e. 36.8% since 09/2017

• Most time spent in generating a stable disc (~ 23% of the consumed time)

 Only problems: 1. Frequent service interruptions on MARCONI 2. File system crashes, too frequent....

* Simulations: Procedures aiming at reproducing natural phenomena in their full complexity

Usage of ICT resources

• These <u>Numerical Experiments</u>^{*} have for the moment consumed 1103130/3000000 assigned hrs., i.e. 36.8% since 09/2017

Comments

• The CINECA-INAF has improved the <u>amount</u> of available CPU, filling a gap between ISCRA and PRACE for project like ours which necessitate to perform a series of numerical experiments.

- experiments.
- basic (astro)physical questions

• The CINECA-INAF has improved the <u>amount</u> of available CPU, filling a gap between ISCRA and PRACE for project like ours which necessitate to perform a series of numerical

• Such medium-sized numerical experiments provide answers to

- experiments.
- simulations.

• The CINECA-INAF has improved the <u>amount</u> of available CPU, filling a gap between ISCRA and PRACE for project like ours which necessitate to perform a series of numerical

• Such medium-sized numerical experiments provide answers to basic (astro)physical questions \rightarrow set the physical questions to be addressed by future Exascale (mostly) one-shot

- experiments.
- simulations.

• The CINECA-INAF has improved the <u>amount</u> of available CPU, filling a gap between ISCRA and PRACE for project like ours which necessitate to perform a series of numerical

• Such medium-sized numerical experiments provide answers to <u>basic (astro)physical questions</u> \rightarrow set the physical questions to be addressed by future Exascale (mostly) one-shot

• Thus they are <u>complementary</u> to Exascale efforts.