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Introduction

By	2025	HL-LHC	data	
will	have	increased	by	
between	one	/two	
orders	of	magnitude.

More	collisions		(x3	
higher	than	today)	and	
more	complex	events

HEP	community	is	spending	significant	efforts	to	get	the	most	out	of	the	LHC
Maximise potential	for	discovery	&	optimise resource	usage



Estimates	of	resource	needs	for	HL-LHC

Simple	model	based	on	today’s	computing	models,	with	expected	HL-LHC	operating	parameters	(pile-up,	trigger	rates,	etc.)
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Data:
• Raw	2016:	50	PB	à 2027:	600	PB
• Derived	(1	copy):	2016:	80	PB	à 2027:	900	PB

CPU:
• x60	from	2016

Technology	at	~20%/year	will	bring	x6-10	in	10-11	years

I.	Bird
2016	WLCG	workshop	

At	least	x10	above	what	is	realistic	to	expect	from	technology	with	reasonably	constant	cost



Big Data at the LHC

• Multi-structured,	Hybrid	data
• Metadata

• Aggregation	of	databases

• Human	driven	structured	data

• Frontier	experiments

• Data	model	evolving	with	data

• Variable		parametric	space

• Data	driven	induction	and	deduction

From:	

Accelerators	infrastructure	(control	systems,	
monitoring	)

Experiments (detectors	&	physics	data)

Computing	infrastructure:
◦ Large	sets	of	metrics	collected	from	system	
components	(CPU	and	batch,	disk	and	archive	storage,	
network	topology	and	flows,	and	application	
throughput)



CERN	openlab
A	public-private partnership between the	research community and	industry

oTrain	the	next	generation	of	
engineers/researchers.	

oPromote	education	and	cultural	exchanges.	

oCommunicate	results	and	reach	new	audiences.	

oCollaborate	and	exchange	ideas	to	create	
knowledge	and	innovation.	

http://openlab.cern

PARTNERS CONTRIBUTORS ASSOCIATES RESEARCH

oEvaluate	state-of-the-art	technologies	in	a	challenging	environment	and	improve	them

oTest	in	a	research	environment	today	technologies	that	will	be	used	in	many	business	sectors	tomorrow.	

F.	Rademaker,	openlab	open	day



openlab phase	VI
Defined research strategy for	2018-2020	phase	VI	in		whitepaper

Phase	VI	main	R&D	areas:	
o DATA-CENTRE	TECHNOLOGIES	AND	

INFRASTRUCTURES

o COMPUTING	PERFORMANCE	AND	
SOFTWARE

o MACHINE	LEARNING	AND	DATA	ANALYTICS

o APPLICATIONS	TO	OTHER	DISCIPLINES:
o Astrophysics,	Medical	Sciences
“Exascale data	processing	at	future	
astrophysics	infrastructures”

HL-LHC	runs	will	be	challenging	environment

o Tools	image	recognition	or	machine	learning	
for	classification	may	have	a	big	impact

o Infrastructure	needs	to	evolve	to	handle	the	much	
higher	data	rates
o New	architectures,	co-processors,	FPGAs,	GPUs	

are	all	candidates	

o Software	performance	will	be	the	key
o Modern	coding,	parallelization	and	

vectorization,	portability

M.	Girone,	openlab	open	day



Code	modernization:	simulation



Motivation
Detailed	simulation	of	particle	transport	and	in	detector	geometries

o State	of	the	art	physics	models,	propagation	in	fields	in	geometries	having	complexities	of	millions	of	parts

9GEANT-DEV@CERN.CH

LHC	uses	 >	50%	of	WLCG	power	for	detector	simulations	
(200	Computing	centers	in	20	countries:	>	600k	cores)

GeantV:	Better	exploiting	features	of	modern	
architectures	
o SIMD	and	NUMA	topology	aware
oMulti-threaded,	Task-based	approach
o Portable	across	different	architectures,	GPUs,	HPC	friendly
o Generic	fast	simulation	integrated	with	full	simulation



Producers	move	towards	hybrid	systems	(AMD	Accelerated Processing Units,	Intel	DL-
100,	Arria 100,	…)

Accelerators:	exceptional raw power	wrt simple	CPU

◦ High	energy efficiency

◦ Massively parallel architecture	->	Substantial performance	challenges	for	developers

GeantV insures portability via	C++	templating,	backends and	low level optimised libraries

o GPU		(offload)

o Intel	Xeon	Phi	(AVX512)

o IBM	Power	8+	and	9	thanks	to	MoU	between	INAF	and	CERN	openlab

Portability

1
0

www.top500.org/
GEANT-DEV@CERN.CH

Increasing	number	in	HPC	systems	use	a	mix	of	multi-cores	CPUs	and	special	purpose	accelerators



Vectorised performance

11

S.V.,	PASC17

VecGeom vectorisation speedup

Parallel	Computing	
Center	2015-2016

Intel Xeon Phi 7210 @1.30 Hz – 64 cores

16 
particles

1024 
particles

SIMD 
max

Intel Ivy-Bridge (AVX) ~2.8x ~4x 4x

Intel Haswell (AVX2) ~3x ~5x 4x

Intel Xeon Phi (AVX-512) ~4.1 ~4.8 8x

Type-based	explicit	vectorization:	geometry	and	magnetic	field	RK	propagator,	working	on	physics

VecGeom:	a	library	of	vectorized geometry	algorithms	to	leverage	on	SIMD	architectures
◦ Substantial	performance	gains	also	in	scalar	mode
◦ Testing	performance	on	GPU

GEANT-DEV@CERN.CH
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Hardware	is	topology	organized	(node	–>	socket	–> CPU	–> caches	–>memory)

Binding	together	resources	which	are	nearby	can	bring	important	benefits
◦ Take	into	account	Non-Uniform	Memory	Access

~9%	gain

GEANT-DEV@CERN.CH

node

GeantV
run	manager

Scheduler

Basketizer

Scheduler

Basketizer

Propagator Propagator (…)

NUMA	discovery	service
(libhwloc)

socket socket socket

CPU CPU

memory



GeantV for	HPC	environments

Multi-tier	mode	(event	servers)
◦ Useful	to	work	with	events	from	file,	to	handle	merging	and	workload	balancing
◦ Communication	with	event	servers	via	MPI	to	get	event	id’s	in	common	files
◦ Started	testing	with	HTCondor

A.	Gheata,	ACAT	2017

GEANT-DEV@CERN.CH



Development	plan
GeantV is	an	R&D	project
◦ Valuable	components	already	delivered	to	the	community	via	Geant4/ROOT:		VecGeom/VecCore,	
improved	EM	physics	models

◦ Aiming	at	complete	EM	shower	simulation	in	a	vector	flow

Available	at	gitlab.cern.ch/GeantV/geant.git
◦ Upcoming	alpha	release:	full	EM	transport,	vectorized geometry/	magnetic	field,	scalar	physics,	user	
interfaces,	examples	of	different	complexity

Full	examples	including	MC	truth	processing	and	I/O	ready	in	2018:
◦ Beta	release:	EM	transport	fully	vectorized,	some	hadronic	components,	more	examples,	fast	simulation
◦ Extend	benchmarking	and	optimisation to	Power	architectures	(INAF)

GEANT-DEV@CERN.CH



Machine	Learning



ML at the LHC
Infrastructure	and	accelerators:	

oIntegration	of	analysis	tools	with	industrial	control	systems

oOnline	monitoring	and	fault	detection

oFault	diagnosis	and	engineering	design

Experiments	and	physics:

oDetector	controls

oData	quality	monitoring	and	anomaly	detection	

oReal	time	processing	and	selection

oAnalysis	and	event	identification

oSimulation	

16GEANT-DEV@CERN.CH



Data	quality	monitoring

Currently	automatic	tests	validated	via	visual	inspection
Fast	(~1h)	reconstruction	on	a	part	of	data	
Full	reconstructed	data	set	monitored	within	~48	h	

V:	Azzolini,	CERN	Openlab ML	workshop	2017

Near-real-time	applications:		identify	problems	in	the	detector	and	data	acquisition	system

Anomaly	detection	techniques	to	
predict	failures

Effective	with	minimal	human	guidance

Adaptative behavior	(data	content,	user	
needs,	available	resources	,	..)

Improve	the	accuracy	of	data	quality

Fast	and	efficient	operation

Collaboration	with

GEANT-DEV@CERN.CH



Deep	Learning	for	fast	simulation

Generic	approach

Can	encapsulate	expensive	computations	

DNN	inference	step	is	faster	than	algorithmic	approach

Already	parallelized	and	optimized	for	GPUs/HPCs.	

Industry	building	highly	optimized	software,	hardware,	and	cloud	services.	

18

Can	we	keep	accuracy	while	doing	things	
faster?	
Can	we	sustain	the	increase	in	detector	
complexity	(future	highly-granular	
calorimeters	are	more	demanding)?	
What	resources	are	needed?

How	generic	the	network	can	be?
Can	we	“adjust”	architecture	to	fit	a	large	
class	of	detectors?	

Parallel	Computing	
Center	2017-2018

GEANT-DEV@CERN.CH

S.V.	ACAT2017



DL engine for fast simulation

First	proof	of	concept	developed	within	GeantV for	a	
generic,		configurable	tool	
◦ Initially	embed	inference	step
◦ Automate	training	according	to	use	case	

Available	as	standalone	tool,		include	also	in	Geant4	
as	soon	as	possible

Test	Generative	Adversarial	Networks (*)
◦ Realistic	generation	of	samples

Keep	training	time	under	control

19GEANT-DEV@CERN.CH

(*) Goodfellow et al. 2014
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Calorimeter fast simulation

◦ High	granularity	EM	calorimeter	
example(*)

◦ Train	on	Geant4	simulation
◦ Detailed	validation	(single	cell	response,	

shower	shapes,	particle	energy)

Physics	results	are	very	promising
Computing	time	speedup	is	huge

20

Time/Shower
(msec)

Detailed	
Simulation

Intel	Xeon	E5-2683 56000

GeantV GAN
(batchsize 128)

Intel i7	(my	
laptop!)

66

GeantV.	GAN
(batchsize 128)

GeForce	GTX	1080 0.04

Single	cell	
energy	
response

Generative Adversarial Networks based on 3D convolutions

Shower	
longitudinal	
section

Geant4
GAN	generated

GEANT-DEV@CERN.CH

(*) CLIC	detector	study



Data	Analysis



Data	Analysis

• Processing	is	analysis	dependent:	
• Slimming	(filter	specific	collisions)	&	Skimming	(reduce	content	per	
collision)

• Calculation	of	new	quantities	

• Multi-step	workflow	(no	interactive	analysis)	
• Rerun	framework	code	

• correct	problems/	mistakes	
• Can	take	weeks	on	GRID	and	local	batch	systems	

• Experiments	now	centralize	first	step
• Not	all	is	actual	CPU	time

• also	bookkeeping,	resubmission	of	failed	jobs,	etc.	
Currently	based	on	ROOT	

Small	groups,	individually	implemented	analysis	code



ROOT	– development	plan

o Parallel,	declarative	analysis	(TDataFrame)

oMore	internal	use	of	parallelism	and	vectorization

o Better	machine	learning	integration	(keras,	tensorflow etc)	and	features	(e.g.	convolutional	
neural	net);	

oWeb-based	(HTML,	CSS,	JavaScript)	graphics,	GUI,	event	display

o Robust,	light-weight	and	fast	histograms

o Improved	PyROOT,	better	C++	integration,	high-bandwidth	connection	to	numpy

o On-demand	build	of	parts	of	ROOT;	reduced	dictionary	cost

o New	platforms,	new	C++

https://root-forum.cern.ch

PCC	to	modernize	ROOT	
Math	and	I/O	libraries	for	
multicore	and	many-core	
architectures



Data Analytics for Big Data

Applying	these	technologies	to	HEP	could	reduce	time-to-physics	

Data	analysis	needs	fast	turn-around	
◦ “Interactivity”	is	a	big	need	for	efficient	data	exploration	

Data	volumes	will	soon	reach	multi-PB	sizes
◦ input	data	composition	different	for	every	analysis

New	scalable	data	services	being	tested
◦ Scalable	&	Time	Series	databases
◦ Hadoop	ecosystem
◦ Interactive	data	analytics	(Jupyter..)

New	toolkits	and	platforms	have	emerged	to	support	the	analysis	of	PB	and	EB	datasets	in	industry.	



CMS	Data	reduction	facility

O.	Gutche,		openlab open	day

based	on	



LHC	Software	on	HPC

Improving	utilization	of	“supercomputers”	by	running	applications	on	idle	cores

oLHC	experiment	applications	are	tailored	to	run	on high-throughput	computing resources	

oA	core	framework	that	allows	hundreds	of	researchers	to	plug	in	specific	algorithms

omany	GB	for	a	single	release	- New	releases	on	a	daily	basis

Distribute	software	stacks	to	world-wide	distributed	computing	resources	via	
CernVM-FS:	purpose-built,	global,	POSIX	file	system

oTests	at	NERSC,		Berkeley,	LRZ,	Munich,	and	CSCS	in	Lugano.	

J.	Blomer,	ISC	2017



Cloud	computing

• CERN	has	its	own	private	cloud

• Investigate	scale-out	with	public	providers	
without	impact	on	users	

• Helix	Nebula	–a	Pre-Commercial	Procurement	
tender for	a European	hybrid	cloud
• support	deployment	of	high-performance	

computing	and	big-data	capabilities	for	scientific	
research

• Available	to	multiple	user	groups	in	HEP,	
astronomy,	life	sciences,	…

T. Bell, ”Accelerating Cloud through science”



Summary

Activities	and	initiatives	are	ongoing	within	the	HEP	to	prepare	for	future	HL	LHC	runs
o CERN	openlab represents	an	effective	framework	for	collaboration	with	industry	partners	and	other	
scientific	communities

Important	IT	challenges	trigger	sustained	efforts		to	
oModernize	HEP	code	and	benefit	from	new	architectures
o Improve/optimise usage	of	HPC	and	distributed		environments
o Introduce	strategies	to	deal	with	Big	Data	(Machine	Learning,	Big	data	Analytics)

Share	experience	and	techniques	developed	in	HEP	with	other	sciences	facing	similar	challenges
o Exascale data	processing	at	future	astrophysics	infrastructures,	such	as	SKA	



MoU	INAF	- CERN	openlab

Collaboration	INAF-CERN	openlab is	highly	profitable	to	both	communities

Some	interesting	points	
o GeantV porting	and	optimisation on	IBM	Power8+	and	Power9 platforms
o Test	and	optimisation for	HPC	environments	
o Explore	possible	cooperation	on	machine	learning	applications	to	simulation	and	other	use-
cases

o “Exa”scale data	processing

INAF	is	involved	in	several	international	projects	and	has	significant	experience	in	ICT	field



Thanks



GeantV approach

Sequential stack-driven processing

Single event transport

Event-level embarrassing 
parallelism 

Cache coherency – low

Vectorization potential – low 
(scalar auto-vectorization)

31

Classical simulation GeantV simulation

One track at a time through all  
stepping stages

u Groups of tracks executing 
together each stage

u Non-sequential basket-driven 
processing 

u Multi event transport
u Track-level fine-grain 

parallelism
u Cache coherency – high

u Vectorization potential – high 
(explicit multi-particle 
interfaces)

GEANT-DEV@CERN.CH



Stage	buffer

SimulationStage virtual	
DoIt(std::vector<Track*>)SimulationStage

Handler	1

Handler	“i”

Basketizer “I”

Select(track)

virtual	
DoIt(Track*)

scalar

vector

Support	bots	scalar/vector	
implementations

SimulationStage

Stage	buffer

SimulationStage

32

A	generic	vector	flow	approach

Stage	buffer
Stage	buffer GeantTrack *

GeantPropagator

GeantTaskData

GeantPropagator

worker	threads

Priority	filtergenN … gen0

primariessecondaries…

Event	
server

NUMA	#0

NUMA	#1

GEANT-DEV@CERN.CH

serving	tracks	for	ALL	threads

threads	of	the	same	
propagator	collaborate

policy	to	consume	showers	first
gen1



GeantV portable	performance

Long-term	maintainability of	the	code

o One	single	version	of	each	algorithm

Platform	specialization	via	C++	templates	and	
low	level	optimised	libraries	

33

template<class Backend>
Backend::double_t 
common_distance_function( 
Backend::double_t input )
{

// Algorithm using Backend types
}

struct VectorBackend
{

typedef UME::SIMD::double_v double_t;
typedef UME::SIMD::bool_v bool_t;
static const bool IsScalar=false;
static const bool IsSIMD=true;

};

1 particle API Many particle 
API (SIMD)

Common C++ 
template functions

UME::SIMD::double_v distance( 
UME::SIMD::double_v );double distance( double );

struct ScalarBackend
{

typedef double double_t;
typedef bool   bool_t;
static const bool IsScalar=true;
static const bool IsSIMD=false;

};

Supported	SIMD	backends:	
Vc,	UME::SIMD

Backend:		(trait)	struct
encapsulating	standard	
types/properties

GEANT-DEV@CERN.CH



Vectorization	tools:	VecCore
Type-based	explicit	vectorization
◦ There	are	few	libraries	providing	this:	Vc,	
UME::SIMD

Geometry	code	&	magnetic	field	RK	propagator	
written	in	this	way
◦ EM	physics	models	coming	next

Can	profit	also	expressing	internal	vectorization	
when	loop	auto-vectorization	is	not	possible

GEANT-DEV@CERN.CH 34

template<typename Real_v>
void DistanceImplementation( const Real_v &input, Real_v & distance)
{

Distance computation algorithm here in terms of VecCore
// Real_v is an arbitrary scalar/SIMD type. VecCore library wraps 
// math/vector operations expressed for different vector backends (Vc, 
// UME::SIMD)

}

template <typename T = Real_s>
class VcVectorT {
public:
using Real_v = Vc::Vector<T>;
using Float_v = Vc::Vector<Float_s>;
using Double_v = Vc::Vector<Double_s>;

// Functions operating with vector types

distance( vector_type &);distance( double &);

template <typename T = Real_s>
class ScalarT {
public:
using Real_v = T;
using Float_v = Float_s;
using Double_v = Double_s;

// Functions operating with scalar types

Scalar interface Vector interface

https://github.com/root-project/veccore



EM	Physics	models	in	GeantV

35

Multi-layered	target
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Scalar	EM	models	revisited	in	a	vectorization	friendly	way	(e.g.	vectorizable sampling)	and	validated	against	
Geant4	version.	Vectorization	work	planned	for	2018	to	have	vectorized shower	simulation.



Generative models for simulation

Many models: Generative Stochastic 
Networks, Variational Auto-Econders, 
Generative Adversarial Networks ..

Realistic generation of samples

Use complicated probability distributions

Optimise multiple output for a single input

Can do interpolation

Work well with missing data

Ranzato,	Susskind,	Mnih,	Hinton,	IEEE	CVPR	2011
https://arxiv.org/pdf/1605.05396.pdf
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Samples of images of bedrooms generated by 
a DCGAN trained on the LSUN dataset.

https://arxiv.org/pdf/1701.00160v1.pdf



GeantV HPC	mode:	preliminary	results

37

(max_time/avg_time -1)*100



GAN Training time 
◦ Using DL techniques for fast simulation is 

profitable if training time is not a bottleneck
◦ Depending on the use case retraining might be 

necessary
◦ Hyper-parameter scan and meta-optimisation
◦ 3D generative adversarial networks are not 

“out-of-the-box”
◦ Complex training process
◦ Training on 150k events for 30 epochs takes 

~24h on NVIDIA GTX-1080

38



Fast simulation

Even larger speedup 
gained by replacing 
digitization and 
reconstruction steps
ML/DL tools are capable 
of “learning” extremely 
complicated feature 
spaces 

39GEANT-DEV@CERN.CH



Vectorised physics
Physics:	Work	mostly	focused	on	building	a	complete	set	of	vectorizable EM	models

Compton	scattering	
model:
comparing	scalar	
with	vector	
performance


