Constraining the geometry of the nuclear wind in PDS456 using a novel emission model

A\&A, in press, arXiv:1809.06184

Alfredo Luminari ${ }^{1,2,{ }^{*}}$, Enrico Piconcelli ${ }^{2}$, Francesco Tombesi ${ }^{1,2,3}$, Luca Zappacosta ${ }^{2}$, Fabrizio Fiore ${ }^{4}$, Luigi Piro ${ }^{5}$, Fausto Vagnetti ${ }^{1}$
${ }^{1}$ Physics Dept., Univ. of Rome Tor Vergata; ${ }^{2}$ INAF-OA Roma; ${ }^{3}$ Astronomy Dept., Univ. of Mariland \& NASA-GSFC; ${ }^{4}$ INAF-OA Trieste; ${ }^{5}$ INAF-IAPS; ${ }^{*}$ alfredo.luminari@roma2.infn.it

Abstract

Outflows from AGNs are a key ingredient in the framework of feedback and coevolution with the host galaxy. In order to constrain the properties and evaluate the impact of the outflows, it is necessary to model their geometry and kinematics from accretion disk up to galaxy-scales. WINE (WINd Emission) is a Monte Carlo model to simulate geometry and kinematics, and estimate the associated emission line profiles, from the X-ray up to the infrared. We hereby present its features as well as its application to the Ultra Fast Outflow (UFO) in the quasar PDS456, a rosetta stone for studying nuclear winds. We also illustrate further developments currently undergoing.

Building the model

Key features:

- The outflow geometry is biconical. Inclination of the line of sight i, angular opening $\theta_{\text {out }}$ and internal cavity $\theta_{\text {in }}$ are free parameters.
- The density profile of the wind is a function of the radius: $n(r)=n_{0}\left(\frac{r_{0}}{r}\right)^{\alpha}$. The exponent α is a free parameter.
- The velocity profile of the wind, $v(r, \theta)$, can be any function of r and θ. This allows to mimic the different wind launching scenarios and to explore momentum- and energy-driven scenarios.

Emission spectrum
for different inclinations (\leftrightarrow) and internal cavities (\downarrow)

The code can be used for all the outflow stages, from X-ray up to the molecular lines. Several features can be integrated into the code, such as detailed radiative transfer for photoionized gas or turbulent line broadening. For the largest scale outflows, it is possibile to include a galactic disk profile to account for the host galaxy emission.

From accretion disk...

Simultaneous modelling of both emission and absorption in X-ray winds

Detailed calculation of radiative transport using the XSTAR code. This allows to:

1. Constrain ξ and N_{H} of the wind
2. Simulate emission profiles using accurate transition rates
3. Include absorption features

The new code will give the possibility to mimic different wind launching mechanism and test their accuracy in fitting the data. First tests undergoing!

Mapping the molecular outflow

To explore the impact of large scale outflows it is necessary to:

1. Separate the emission of the outflow from that of the host galaxy and estimate its obscuration.
2. Parametrize perturbations and small-scale inhomogeneities in the molecular wind.
3. Update outflow geometry according to the galaxy environment.

Already some preliminar result!

Feruglio, Fiore, Carniani et al. 2018, A\&A in press (arXiv:1804.05566) The dense molecular gas in the $z \sim 6$ QSO SDSS J231038+185519 resolved by ALMA

