Dependence of equivalent width of quasar emission lines on UV spectral index, quasar luminosity and BH mass

Olena Torbaniuk

Department of Physics, University "Federico II" in Naples, Italy Main Astronomical Observatory of the National Academy of Science of Ukraine, Kyiv, Ukraine

General view

Composite spectra of the quasars
from Vanden Berk et al., 2001

- "Big Blue Bump" and (quasi-) power-law continuum
- broad and narrow emission lines
- broad absorption lines ($\sim 15-20 \%$)
- Ly α, \ldots.-forests (absorption)

Model of AGN
$\Longrightarrow \quad$ thermal emission of accretion disc
\Longrightarrow - surrounding clumped gas
\Longrightarrow - gas flows outward centre
$\Longrightarrow \quad$ intergalactic H_{I} etc.

between them

Baldwin effect: anticorrelation of the continuum luminosity I_{ν} at $1450 \AA$ and the equivalent width of C IV (1549 A) emission line (and others).

Characteristics	Dependence	Origin
EW-L	YES	proximity of the studied regions.
EW-L	(Baldwin effect)	(Lyy α, Si iv+O iv, C iv, Mg iI, Al iil, ...)
$\mathrm{L}-\alpha_{\lambda}$	NO*	unknown
EW- α_{λ}	?	?
$\mathrm{M}_{B H^{-} \alpha_{\lambda}}$?	?

* - from Ivashchenko, Sergijenko \& Torbaniuk, MNRAS, 2013.

The sample

redshift distribution of the sample of quasars.

Spectral index distribution of the sample of quasars.

192 composite spectra:

$$
\alpha_{\lambda}=-2.3 \ldots-0.8 \quad\left(\Delta \alpha_{\lambda}=0.1\right)
$$

$$
\left\langle\log \left(l_{1450}\right)\right\rangle=42.2 \ldots 43.4 \quad\left(\Delta\left\langle\log \left(l_{1450}\right)\right\rangle=0.1\right)
$$

Dependence between values $\langle z\rangle$ and $\left\langle\log I_{1450}\right\rangle$ of subsamples and α_{λ} of composite spectra.

Compilation of the composite spectra

Composite spectra with similar α_{λ} and different 〈log l_{1450}).

Composite spectra with similar $\left\langle\log I_{1450}\right\rangle$ and different α_{λ}.

The wavelength ranges

$$
\begin{array}{ll}
1215-1285 \AA & \text { Ly } \alpha+\mathrm{O} \text { IV }+\mathrm{N} \text { v+Si } \mathrm{Si}^{*}+\mathrm{Si}_{\text {II }} \\
1290-1320 \AA & \text { Si III*+O I+Si II } \\
1320-1350 \AA & \text { C II+O IV+Ca II } \\
1350-1430 \AA & \text { Si IV+O Iv] }
\end{array}
$$

12 composite spectra with similar spectral indices $\left(\alpha_{\lambda}=-2.2\right)$ with lines identified.

Calculation of EW

- the wavelength ranges were fitted with the smallest possible number of emission lines (using IDL lmfit):

$$
\begin{gather*}
f(\lambda)=b+\sum_{k} a_{k} \exp \left[-\frac{\left(\lambda-\lambda_{k}^{0}\right)^{2}}{2 w_{k}^{2}}\right], \tag{1}\\
f(\lambda)=c \cdot \lambda^{\alpha_{\lambda}}+\sum_{k} a_{k} \exp \left[-\frac{\left(\lambda-\lambda_{k}^{0}\right)^{2}}{2 w_{k}^{2}}\right] ; \tag{2}
\end{gather*}
$$

- finding of λ_{k}^{0} and initial parameters ($b / c, a_{k}, w_{k}$);
- with fixed λ_{k}^{0} finding of parameters $b / c, a_{k}, \lambda_{k}^{0}, w_{k}$;
- calculation of equivalent width (compute integrals of obtained functions describing individual lines or sets of lines).

Equivalent widths and dependencies EW $-\alpha_{\lambda}$, EW $-L$

Dependence of equivalent width of quasar emission lines on UV spectral index for superposition of lines within the wavelength ranges 1215-1285 $\AA, 1290-1320 \AA$ (colour shows the change of the luminosity)

Equivalent widths and dependencies EW $-\alpha_{\lambda}$, EW - L

Dependence of equivalent width of quasar emission lines on UV spectral index for superposition of lines within the wavelength ranges $1320-1350 \AA, 1350-1430 \AA$ (colour shows the change of the luminosity)

Equivalent widths and dependencies EW $-\alpha_{\lambda}$, EW $-L$

Dependence of equivalent width of quasar emission lines on UV spectral index for superposition of lines within the wavelength ranges 1215-1285 \AA (colour shows the change of the luminosity).

Calculation of $M_{B H}$

Calculation of virial mass of central supermassive BH for 3535 individual quasars and composite spectra (using CIV emission line):

$$
\begin{gather*}
\lg \left(\frac{M_{B H}}{M_{\odot}}\right)=a+b \lg \left(\frac{\lambda L_{\lambda}}{10^{44} e r g s^{-1}}\right)+2 \lg \left(\frac{W}{k m s^{-1}}\right), \tag{3}\\
L_{\lambda}=4 \pi D_{\text {phot }}^{2} F_{\lambda} \tag{4}\\
D_{\text {phot }}=\frac{c(1+z)}{H_{0}} \int_{0}^{z} \frac{d t}{\sqrt{\Omega_{\Lambda}+\Omega_{M}(1+t)^{3}}} \tag{5}
\end{gather*}
$$

- F_{λ} and L_{λ} - flux and luminosity, W - full width at half minimum (FWHM) of C IV (1549 \AA); $D_{\text {phot }}$ - photometric distance, z - redshift of the quasar;
- $H_{0}=67.74 \pm 0.78 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}, \Omega_{\Lambda}=0.692 \pm 0.010, \Omega_{M}=0.308 \pm 0.010$ (Planck+WP+BAO from Planck Collaboration, 2015);
- calibration parameters $a=0.66$ and $b=0.53$ for C IV from Shen et al., 2011.

The diagrams $\alpha_{\lambda}-M_{B H}$

Mass of quasar's BH - spectral index α_{λ} diagram (colour shows the change of the luminosity)

Mass of quasar's BH - spectral index α_{λ} diagram for 3535 individual quasars.

Conclusions

1 there is $\mathrm{EW}-\alpha_{\lambda}$ dependence for those lines for which Baldwin effect is observed (for some lines we have inverse dependence ($\mathrm{Ly} \alpha+\mathrm{O} \mathrm{v}+\mathrm{N} \mathrm{v}+\mathrm{Si} \mathrm{iI}^{*}+\mathrm{Si} \mathrm{II}^{2}$) and for others ($\mathrm{C}_{\mathrm{II}}+\mathrm{O} \mathrm{V}+\mathrm{Ca}_{\mathrm{II}}$ and $\left.\mathrm{X} 1+\mathrm{Si}_{\mathrm{IV}}+\mathrm{O}_{\mathrm{IV}}\right]+\mathrm{X} 2$) this dependence is direct);
2 there is no EW $-\alpha_{\lambda}$ dependence for those lines for which Baldwin effect is not observed ($\mathrm{Si} \mathrm{III}^{*}+\mathrm{O} \mathrm{I}+\mathrm{Si} \mathrm{II}$);
3 the separation of $\mathrm{Ly} \alpha+\mathrm{O} \mathrm{v}+\mathrm{N} \mathrm{v}+\mathrm{Si} \mathrm{II}^{*}+\mathrm{Si}$ II lines shows that Baldwin effect and $\mathrm{EW}-\alpha_{\lambda}$ dependence exists only for $\mathrm{Ly} \alpha+\mathrm{O} \mathrm{v}$ and Si II , while for $\mathrm{N} \mathrm{V}+\mathrm{Si} \mathrm{II}^{*}$ those effects doesn't exists;

4 there is no dependence between α_{λ} and virial mass of the BH .

Characteristics	Dependence	Origin
$\mathrm{EW}-\mathrm{L}$	YES (Baldwin effect)	proximity of the studied regions. $\left(\mathrm{Ly} \alpha, \mathrm{Si}_{\text {IV }}+\mathrm{O}\right.$ IV, C IV, Mg II, AI III,..) $)$
$\mathrm{L}-\alpha_{\lambda}$	NO	unknown
$\mathrm{EW}-\alpha_{\lambda}$	YES	unknown for those lines for which Baldwin effect is observed
$\mathrm{M}_{B H}-\alpha_{\lambda}$	NO	unknown

