Dependence of equivalent width of quasar emission lines on UV spectral index, quasar luminosity and BH mass

Olena Torbaniuk

Department of Physics, University "Federico II" in Naples, Italy

Main Astronomical Observatory of the National Academy of Science of Ukraine, Kyiv, Ukraine

O. Torbaniuk

Dependence of EW on I_{ν} , α_{λ} , M_{BH}

10/2018

General view

- broad and narrow emission lines
- broad absorption lines (~15–20%)
- Lyα,...–forests (absorption)

Model of AGN

- \Rightarrow \bullet thermal emission of accretion disc
- ⇒ surrounding clumped gas
- \Rightarrow gas flows outward centre
- ⇒ intergalactic H I etc.

Characteristics and dependencies

between them

Baldwin effect: anticorrelation of the continuum luminosity I_{ν} at 1450 Å and the equivalent width of C IV (1549 Å) emission line (and others).

Characteristics	Dependence	Origin
EW–L	YES	proximity of the studied regions.
	(Baldwin effect)	(Ly α , Si IV+O IV, C IV, Mg II, Al III,)
L– α_{λ}	NO*	unknown
EW– α_{λ}	?	?
$M_{BH} - \alpha_{\lambda}$?	?

* – from Ivashchenko, Sergijenko & Torbaniuk, MNRAS, 2013.

The sample

Compilation of the composite spectra

O. Torbaniuk

Dependence of EW on $I_{\nu}, \alpha_{\lambda}, M_{BH}$

The wavelength ranges

Calculation of EW

the wavelength ranges were fitted with the smallest possible number of emission lines (using IDL lmfit):

$$f(\lambda) = b + \sum_{k} a_{k} \exp\left[-\frac{(\lambda - \lambda_{k}^{0})^{2}}{2w_{k}^{2}}\right], \qquad (1)$$

$$f(\lambda) = c \cdot \lambda^{\alpha_{\lambda}} + \sum_{k} a_{k} \exp\left[-\frac{(\lambda - \lambda_{k}^{0})^{2}}{2w_{k}^{2}}\right];$$
 (2)

- finding of λ⁰_k and initial parameters (b/c, a_k, w_k);
 with fixed λ⁰_k finding of parameters b/c, a_k, λ⁰_k, w_k;
- calculation of equivalent width (compute integrals of obtained functions describing individual lines or sets of lines).

Equivalent widths and dependencies EW $-\alpha_{\lambda}$, EW -L

Dependence of equivalent width of quasar emission lines on UV spectral index for superposition of lines within the wavelength ranges 1215–1285 Å, 1290–1320 Å (colour shows the change of the luminosity)

10/2018 8

Equivalent widths and dependencies EW – α_{λ} , EW – L

Dependence of equivalent width of quasar emission lines on UV spectral index for superposition of lines within the wavelength ranges 1320–1350 Å, 1350–1430 Å (colour shows the change of the luminosity)

Equivalent widths and dependencies EW $-\alpha_{\lambda}$, EW -L

Dependence of equivalent width of quasar emission lines on UV spectral index for superposition of lines within the wavelength ranges 1215–1285 Å (colour shows the change of the luminosity).

Calculation of M_{BH}

Calculation of virial mass of central supermassive BH for 3535 individual quasars and composite spectra (using $C_{\rm IV}$ emission line):

$$\lg\left(\frac{M_{BH}}{M_{\odot}}\right) = a + b \lg\left(\frac{\lambda L_{\lambda}}{10^{44} erg \, s^{-1}}\right) + 2 \lg\left(\frac{W}{km \, s^{-1}}\right), \qquad (3)$$

$$L_{\lambda} = 4\pi D_{phot}^2 F_{\lambda}, \tag{4}$$

$$D_{phot} = \frac{c(1+z)}{H_0} \int_0^z \frac{dt}{\sqrt{\Omega_\Lambda + \Omega_M (1+t)^3}},$$
(5)

- F_{λ} and L_{λ} flux and luminosity, W full width at half minimum (FWHM) of C IV (1549 Å); D_{phot} photometric distance, z redshift of the quasar;
- $H_0 = 67.74 \pm 0.78 \text{ km s}^{-1} \text{ Mpc}^{-1}$, $\Omega_{\Lambda} = 0.692 \pm 0.010$, $\Omega_M = 0.308 \pm 0.010$ (Planck+WP+BAO from Planck Collaboration, 2015);

calibration parameters a = 0.66 and b = 0.53 for C IV from Shen et al., 2011.

O. Torbaniuk

/ 13

The diagrams α_{λ} -M_{BH}

Dependence of EW on I_{ν} , α_{λ} , M_{BH}

Conclusions

Conclusions

- there is EW-α_λ dependence for those lines for which Baldwin effect is observed (for some lines we have inverse dependence (Lyα+O v+N v+Si II*+Si II) and for others (C II+O v+Ca II and X1+Si IV+O IV]+X2) this dependence is direct);
- 2 there is no EW- α_{λ} dependence for those lines for which Baldwin effect is not observed (Si III*+O I+Si II);
- B the separation of Ly α +O v+N v+Si II*+Si II lines shows that Baldwin effect and EW- α_{λ} dependence exists only for Ly α +O v and Si II, while for N v+Si II* those effects doesn't exists;
- 4 there is no dependence between α_{λ} and virial mass of the BH.

Characteristics	Dependence	Origin
EW–L	YES	proximity of the studied regions.
	(Baldwin effect)	(Lyα, Si iv+O iv, C iv, Mg ii, Al iii,)
$L-\alpha_{\lambda}$	NO	unknown
$EW\text{-}\alpha_\lambda$		unknown
	YES	for those lines for which Baldwin
		effect is observed
$M_{BH} - \alpha_{\lambda}$	NO	unknown