How to assemble extremely massive black holes in a very short quasar life-time

Tullia Sbarrato Università degli Studi di Milano - Bicocca

High-z quasars

tracers of the first supermassive black holes

non-jetted

~200 quasars

with $M_{BH} > 10^9 \, M_{\odot}$ close to Eddington limit? at z > 5.7

(Banados+2016)

jetted

rare sources —> z>4

jet physics in early Universe?

do jets affect accretion of first SMBH?

LET'S TRY WITH BLAZARS!

Why blazars?

Why blazars?

Ghisellini et al. 2017

Why blazars?

Ghisellini et al. 2017

Looking for blazar candidates

blazars can be found in optical quasar catalogs:

SDSS + FIRST quasar catalog 105783 \geqslant z > 41248 radio-detected >1mJy 53 R > 10031 $R = F_{5\mathrm{GHz}}/F_B$

SEE TALK BY SILVIA BELLADITTA ON HOW
TO FIND YOUR OWN BLAZAR CANDIDATE

High masses at high redshifts

Formation time-scales

do we have other options?

Standard accreting disc

Shakura & Sunyaev 1973

$$L_{\rm d} = \eta_{\rm d} \dot{M} c^2$$

$$Log\left(\frac{M_{\rm BH}}{M_{\odot}}\right) = 8.5$$

$$LogL_{\rm d} = 46.1$$

temperature

Super-Eddington accreting disc

photon trapping radius:

$$R_{\rm pt} = \frac{3}{2} \frac{\dot{M}}{\dot{M}_{\rm Edd}} R_{\rm g} h$$

Ohsuga et al. 2002

Super-Eddington accreting disc?

Summary

we observe lots of extremely massive black holes in the early Universe

most of them seem to host a jet!

they need to accrete extremely fast

... BUT ...

do they look like Super-Eddington? they might be accreting faster than we think...

