AGN & host galaxy scaling relations

Chiara Feruglio - OATs

Work done in collaboration with:

3

BEAUTY and the

BEAST

D'Odorico, Fiore, Cristiani @OATs Pallottini, Gallerani, Ferrara, Carniani @SNS Piconcelli, Bischetti @OAR Malizia, Molina @ OAA Marconi, Maiolino et al.

 \bigcirc

Main scenario of Galaxy and AGN early assembly

- low density filaments feed high density regions
- merging events (@ z~10)
- galaxies and SMBH form

Main scenario of Galaxy and AGN early assembly

- low density filaments feed high density regions
- merging events (@ z~10)
- galaxies and SMBH form

Witnessing galaxy assembly at the edge of the reionization epoch^{*}

V. D'ODORICO,^{1,2} C. FERUCLIO,¹ A. FERRARA,² S. GALLERANI,² A. PALLOTTINI,^{2,3} S. CARNIANI,^{4,5} R. MAIOLINO,^{4,5} S. CRISTIANI,¹ A. MARCONI,^{3,7} E. PICONCELLI,⁸ AND F. FIORE¹

2018 ApJL, 863, 29

A DLA at z=5.939 detected towards z=6.0025 QS0 J2310+1855

 $[Fe/H] = -3.08 \pm 0.12$ $[Si/H] = -2.86 \pm 0.14$

in X-SHOOTER Archive data

Witnessing galaxy assembly at the edge of the reionization epoch^{*}

V. D'ODORICO,^{1,2} C. FERUGLIO,¹ A. FERRARA,² S. GALLERANI,² A. PALLOTTINI,^{2,3} S. CARNIANI,^{4,5} R. MAIOLINO,^{4,5} S. CRISTIANI,¹ A. MARCONI,^{3,7} E. PICONCELLI,⁸ AND F. FIORE¹

2018 ApJL, 863, 29

A DLA at z=5.939 detected towards z=6.0025 QS0 J2310+1855

 $[Fe/H] = -3.08 \pm 0.12$ $[Si/H] = -2.86 \pm 0.14$

in X-SHOOTER Archive data

Serenity-18: the Rosetta Stone of galaxy formation

DBC-offset [arcsec]

Most sensitive ALMA observation of a QSO at cosmic dawn

Detection of CO(6-5)-emitting galaxy at z=5.939

QSOJ2310+1855 6.0025 DLA Sereníty-18 5.939 40 kpc

ALMA J231038.44+185521.95

RA (J2000)	23:10:38.44
DEC (J2000)	18:55:21.95
Redshift of CO(6.5) emission	5.93957
Impact parameter [arcsec]	6.7
FWHM _{CO(6-5)} [km/s]	155 ± 30
$\int S_{CO(6-5)} d\sigma \left[\text{Jy km/s} \right]$	0.06 ± 0.012
$L'CO(6 - 5) [K \text{ km/s pc}^2]$	$(2\pm0.4) imes10^9$
$M(H_2) [M_{\odot}]$	$(5.4 \pm 0.5) imes 10^{9}$
M _{dya} sin ⁹ (i) [M _©]	$\leq 5.6 \times 10^9$
Бена [Б⊚]	$\approx 10^{12}$
SFR [M _☉ /yr]	ss 115

Serenity-18: the Rosetta Stone of galaxy formation

QSO J2310+1855

40 kpc

Sereníty-18

D'Odoríco, CF + 2018 ApjL, 863, 29

Most sensitive ALMA observation of a QSO at cosmic dawn

Detection of CO(6-5)-emitting galaxy at z=5.939

3.0

2.5

2.0

00{Z/Z-

-1.0

0.0

0.5

-1.5

ALMA J231038.44+185521.95

L6.0025

5.939

DLA

2746 Rm/S

Redshift

RA (J2000)	23:10:38.44
DEC (J2000)	18:55:21.95
Redshift of CO(6.5) emission	5.93957
Impact parameter [arcsec]	6.7
FWHM _{CO(6-5)} [km/s]	155 ± 30
$\int S_{CO(6-5)} dv \left[\text{Jy km/s} \right]$	0.06 ± 0.012
$L'CO(6 - 5) [\text{K km/s pc}^{-2}]$	$(2\pm0.4) imes10^9$
$M(H_2) [M_{\odot}]$	$(5.4\pm0.5)\times10^9$
M _{dyo} sin ⁹ (i) [M _☉]	$\leq 5.6 imes 10^9$
Беня. [Б⊚]	$\approx 10^{12}$
SFR [M _☉ /yr]	≈ 115

Main questions

- Relation SF-AGN feedback, quenching vs enhancement
- Agent(s) of AGN feedback (winds vs jets)
- Physical scales affected
- Net effect on host galaxy

Main questions

- Relation SF-AGN feedback, quenching vs enhancement
- Agent(s) of AGN feedback (winds vs jets)
- Physical scales affected
- Net effect on host galaxy

Probes

- Cold molecular gas (H2) site of star formation
- Warm ionised gas
- Stars within outflows

Main questions

- Relation SF-AGN feedback, quenching vs enhancement
- Agent(s) of AGN feedback (winds vs jets)
- Physical scales affected
- Net effect on host galaxy

Probes

- Cold molecular gas (H2) site of star formation
- Warm ionised gas
- Stars within outflows

Preferred tracers Molecular emission lines CO, HCN, ... also [CII] ...

Main questions	 Relation SF-AGN feedback, quenching vs enhancement Agent(s) of AGN feedback (winds vs jets) Physical scales affected Net effect on host galaxy
Probes	 Cold molecular gas (H2) - site of star formation Warm ionised gas Stars within outflows
Preferred tracers	Molecular emission lines CO, HCN, also [CII]
Methods	Scaling relations between Μ΄, Μ΄/SFR, Μ(H ₂)/Μ*, t _{depl} and Μ*, L _{AGN} , Μ _{BH} , λ _{Edd}
	- Need unbiased AGN samples • IbisCO : low z AGN

SUPER : z~2-3 AGN

SF galaxy scaling relations

Molecular gas fraction $F_{gas} = M(H_2)/M^*$ probes the richness of gas available for SF

Molecular Gas fraction M(H₂)/M* strong function of z

Genzel+2015, Tacconí+2018

Star Forming galaxies

SF galaxy scaling relations

Molecular gas fraction $F_{gas} = M(H_2)/M^*$ prob

probes the richness of gas available for SF

Molecular Gas fraction M(H₂)/M* strong function of z

Genzel+2015, Tacconí+2018

After correcting offset from MS and z MASS QUENCHING

M(H₂)/M* reduced at high M* AGN feedback at work?

AGN host galaxy scaling relations IbisCO survey design

Unbiased survey of H₂ reservoirs & outflows in AGN host galaxies

- 60 Hard X-ray 20-100 KeV AGN from the IBIS Integral survey unbiased against nuclear obscuration
- $L_x > 10^{43}$ erg/s
- z < 0.05
- Accurate BH masses
- M* , SFR

Several Seyferts from Maiolino+1997 and other works

Reaches fainter flux limits than BASS survey sample of NLSy1

Feruglío ín prep

IbisCO survey: Observations

- @IRAM 30m: CO (1-0) & (2-1) Gas reservoirs & outflows
 P.I. Feruglio 70 hours survey completed 2017 80% detection rate
- @ALMA band 6: map CO with 50 pc resolution P.I. Feruglio (cycle 5)
- @INTEGRAL, NuSTAR, XMM: X-ray spectra P.I. Malizia ---> Lx, N_H, M_{ACC} + WA, UFO
- + ancillary data from CALIFA, Manga: SFR, M*, M_{BH}
 - Stellar Masses: Koss+2011, other literature, all corrected to match beam size
 - Beam 30m size (21") probes different galaxy fractions at different z

IbisCO survey: Observations

lbisCO sample properties

 $\begin{array}{l} \mbox{PG QSO} \ (Shangguan \& Ho \ 2018) \\ \ 45 < \mbox{log } L_{bol} < \mbox{47} \\ \ 10 < \mbox{log } M^* < \ 11.6 \end{array}$

lbisCO survey: gas fractions

Molecular gas fraction $F_{gas} = M(H_2)/M^*$ probes the richness of gas available for SF

- Molecular gas fraction of IbisCO host galaxies
- L(CO)-M(H2) Conversion factor = $3.2 M_{\odot} K^{-1} \text{ km/s pc}^{-2}$ for all
- Metallicity dependence not yet included (can be refined)
- Similar to COLDGASS Saintonge+2011/17

Feruglío ín prep.

IbisCO survey: Fgas vs M*

- Do AGN have smaller F_{gas} than Main Sequence SF galaxies?
 - Normalized Gas
 Fraction consistent with
 SF galaxies
 - Several have F_{gas} ~3-10 times smaller
 - Larger scatter at high M*
 - NLSY1 in lower M* hosts

IbisCO survey: Fgas vs M*

Do AGN have smaller F_{gas} than Main Sequence SF galaxies?

12.0

Mencí+2018 blast model

Bíased sample:

Possible to measure strong outflows only if OF projected velocity is >~ disk velocity

IbisCO survey: Fgas vs Lbol - Lbol/LEdd

Normalized Gas Fraction : no trend with Lbol or Lbol/LEdd

- NLSY1 gas fraction larger than CT AGN
- NLSY1 larger Lbol/LEdd than CT AGN

Samples: PG QSO Shangguan & Ho 2018 - IR selected Kirkpatrick+14 - Brusa+18, Kakkad+17, Vayner+17, ...

lbisCO survey: Fgas vs Lbol/M*

Normalized Gas Fraction vs AGN Specific Accretion Rate

- No trend
- Large scatter
- CT AGN on average lower specific accretion rates than NLSy1 and average lbisCO

Feruglio in prep.

Conclusions

- AGN gas fractions similar to those of MS galaxies with similar masses (e.g. COLDGASS)
- Large scatter. Many outliers! both in IbisCO and other samples, with factor 3-10 smaller gas fraction
- For IbisCO the outliers are found when sampling the inner part of the galaxy
- No strong dependencies between gas fraction and AGN properties (L_{bol}, L_{bol}/L_{Edd}, specific accretion rate)