AGN & host galaxy scaling relations

Chiara Feruglio - OATs

Work done in collaboration with:
D’Odorico, Fiore, Cristiani @OATs
Pallottini, Gallerani, Ferrara, Carniani @SNS
Piconcelli, Bischetti @OAR
Malizia, Molina @ OAA
Marconi, Maiolino et al.

This project has received funding from the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 664931.
Main scenario of Galaxy and AGN early assembly

- low density filaments feed high density regions
- merging events (@ z~10)
- galaxies and SMBH form
Main scenario of Galaxy and AGN early assembly

- low density filaments feed high density regions
- merging events (@ z~10)
- galaxies and SMBH form

Hydro-simulation, Pallottini et al. 2017, courtesy A. Pallottini
ADLA at $z=5.939$ detected towards $z=6.0025$ QSO J2310+1855

Becker et al. (2012) 9 absorption systems at $4.7 < z < 6.3$

Very metal poor, nearly pristine gas

$[\text{Fe/H}] = -3.08 \pm 0.12$
$[\text{Si/H}] = -2.86 \pm 0.14$
ADLA at $z=5.939$ detected towards $z=6.0025$ QSO J2310+1855

Very metal poor, nearly pristine gas

[Fe/H] = -3.08 ± 0.12
[Si/H] = -2.86 ± 0.14

Becker et al. (2012) 9 absorption systems at $4.7 < z < 6.3$
Serenity-18: the Rosetta Stone of galaxy formation

D’Odorico, CF + 2018 ApJL, 863, 29

Most sensitive ALMA observation of a QSO at cosmic dawn

Detection of CO(6-5)-emitting galaxy at z=5.939

QSO J2310+1855

Redshift

2746 km/s

5.939

40 kpc

DLA

Serenity-18

ALMA J231038.44+185521.95

<table>
<thead>
<tr>
<th>RA (J2000)</th>
<th>DEC (J2000)</th>
<th>Redshift of CO(6-5) emission</th>
<th>Impact parameter [arcsec]</th>
<th>FWHM$_{CO(6-5)}$ [km/s]</th>
<th>$\int S_{CO(6-5)} d\nu$ [Jy km/s]</th>
<th>$L'CO(6-5)$ [K km/s pc2]</th>
<th>M(H2) [M\odot]</th>
<th>$M_{dust, sin(i)}$ [M$_\odot$]</th>
<th>L_{IR} [L$_\odot$]</th>
<th>SFR [M$_\odot$/yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:10:38.44</td>
<td>18:55:21.95</td>
<td>5.939757</td>
<td>6.7</td>
<td>155 ± 30</td>
<td>0.06 ± 0.012</td>
<td>$(2 \pm 0.4) \times 10^9$</td>
<td>$5.4 \pm 0.5 \times 10^8$</td>
<td>< 5.6×10^9</td>
<td>\approx 1014</td>
<td>\approx 115</td>
</tr>
</tbody>
</table>
Serenity-18: the Rosetta Stone of galaxy formation

D’Odorico, CF + 2018 ApJL, 863, 29

Most sensitive ALMA observation of a QSO at cosmic dawn

Serenity-18: the Rosetta Stone of galaxy formation

Detection of CO(6-5)-emitting galaxy at z=5.939
Main questions

- Relation SF-AGN feedback, quenching vs enhancement
- Agent(s) of AGN feedback (winds vs jets)
- Physical scales affected
- Net effect on host galaxy
AGN & host galaxy co-evolution

Main questions
- Relation SF-AGN feedback, quenching vs enhancement
- Agent(s) of AGN feedback (winds vs jets)
- Physical scales affected
- Net effect on host galaxy

Probes
- **Cold molecular gas (H2) - site of star formation**
- Warm ionised gas
- Stars within outflows
AGN & host galaxy co-evolution

Main questions

• Relation SF-AGN feedback, quenching vs enhancement
• Agent(s) of AGN feedback (winds vs jets)
• Physical scales affected
• Net effect on host galaxy

Probes

• **Cold molecular gas (H2) - site of star formation**
• Warm ionised gas
• Stars within outflows

Preferred tracers

Molecular emission lines CO, HCN, … also [CII] …
AGN & host galaxy co-evolution

Main questions
• Relation SF-AGN feedback, quenching vs enhancement
• Agent(s) of AGN feedback (winds vs jets)
• Physical scales affected
• Net effect on host galaxy

Probes
• Cold molecular gas (H2) - site of star formation
• Warm ionised gas
• Stars within outflows

Preferred tracers
Molecular emission lines CO, HCN, … also [CII] …

Methods
Scaling relations between
\[\dot{M}, \dot{M}/SFR, M(H_2)/M^*, t_{\text{depl}} \]
and \[M^*, L_{\text{AGN}}, M_{\text{BH}}, \lambda_{\text{Edd}} \]

- Need unbiased AGN samples • IbisCO : low z AGN
 • SUPER : z~2-3 AGN
Molecular gas fraction $F_{\text{gas}} = \frac{M(\text{H}_2)}{M^*}$ probes the richness of gas available for SF

Molecular Gas fraction $\frac{M(\text{H}_2)}{M^*}$ strong function of z

Genzel+2015, Tacconi+2018

Star Forming galaxies
Molecular gas fraction $F_{\text{gas}} = \frac{M(H_2)}{M^*}$ probes the richness of gas available for SF.

Molecular gas fraction $\frac{M(H_2)}{M^*}$ is a strong function of z.

After correcting offset from MS and z, mass quenching occurs.

$\frac{M(H_2)}{M^*}$ is reduced at high M^*, suggesting AGN feedback at play.

Star forming galaxies are depicted in the diagram.
Unbiased survey of H$_2$ reservoirs & outflows in AGN host galaxies

- 60 Hard X-ray 20-100 KeV AGN from the **IBIS Integral survey** unbiased against nuclear obscuration
 - L$_x$ > 1043 erg/s
 - z < 0.05
 - Accurate BH masses
 - M*, SFR

Several Seyferts from Maiolino+1997 and other works

Reaches fainter flux limits than BASS survey - **Sample of NLSy1**
IbisCO survey: Observations

• **@IRAM 30m:** CO (1-0) & (2-1) - Gas reservoirs & outflows
 P.I. Feruglio - 70 hours survey completed 2017 - 80% detection rate

• **@ALMA band 6:** map CO with 50 pc resolution - P.I. Feruglio (cycle 5)

• **@INTEGRAL, NuSTAR, XMM:** X-ray spectra - P.I. Malizia
 ——> Lx, N_H, Ṁ_{ACC} + WA, UFO

• + ancillary data from CALIFA, Manga: SFR, M*, M_{BH}
 • Stellar Masses: Koss+2011, other literature, all corrected to match beam size
 • Beam 30m size (21") probes different galaxy fractions at different z
IbisCO survey: Observations

- **@IRAM 30m:** CO (1-0) & (2-1) - Gas reservoirs & outflows
 - P.I. Feruglio - 70 hours survey completed 2017 - 80% detection rate

- **@ALMA band 6:** map CO with 50 pc resolution
 - P.I. Feruglio (cycle 5)

- **@INTEGRAL, NuSTAR, XMM:** X-ray spectra
 - Lx, N_H, M_\text{BH} + WA, UFO

- + ancillary data from CALIFA, Manga: SFR, M_*, M_\text{BH}
IbisCO sample properties

IbisCO \[43 < \log L_{\text{bol}} < 45.5 \]
\[9 < \log M^* < 11.4 \]

SUPER \[44 < \log L_{\text{bol}} < 47 \]
\[9.5 < \log M^* < 11.4 \]

PG QSO (Shangguan & Ho 2018)
\[45 < \log L_{\text{bol}} < 47 \]
\[10 < \log M^* < 11.6 \]

Feruglio in prep.
IbisCO survey: gas fractions

Molecular gas fraction $F_{\text{gas}} = \frac{M(H_2)}{M^*}$ probes the richness of gas available for SF

- Molecular gas fraction of IbisCO host galaxies
- $L(\text{CO}) - M(\text{H}_2)$
 Conversion factor
 $= 3.2 \, M_\odot \, \text{K}^{-1} \, \text{km/s} \, \text{pc}^{-2}$
 for all
- Metallicity dependence not yet included (can be refined)
- Similar to COLDGASS
 Saintonge+2011/17

IRAM30m observations + Maiolino+1997 + others
Feruglio in prep.
IbisCO survey: F_{gas} vs M^*

- Do AGN have smaller F_{gas} than Main Sequence SF galaxies?

- Normalized Gas Fraction consistent with SF galaxies
 - Several have $F_{\text{gas}} \sim 3$-10 times smaller
 - Larger scatter at high M^*
 - NLSY1 in lower M^* hosts
IbisCO survey: F_{gas} vs M^*

- Do AGN have smaller F_{gas} than Main Sequence SF galaxies?

- Normalized Gas Fraction consistent with SF galaxies

- Several have $F_{\text{gas}} \sim 3$-10

AGN with massive outflows do have smaller F_{gas}

Why?
- FF17 biased sample
- FF17 F_{gas} - outflow regions matched
- single dish F_{gas} diluted by outer galaxy

Fiore+2017
Menci + 2018 blast model

Biased sample:
Possible to measure strong outflows only if OF projected velocity is \geq disk velocity
Normalized Gas Fraction: no trend with L_{bol} or L_{bol}/L_{Edd}

- NLSY1 gas fraction larger than CT AGN
- NLSY1 larger L_{bol}/L_{Edd} than CT AGN

Samples: PG QSO Shangguan & Ho 2018 - IR selected Kirkpatrick+14 - Brusa+18, Kakkad+17, Vayner+17, …
IbisCO survey: \(F_{\text{gas}} \) vs \(L_{\text{bol}}/M^* \)

Normalized Gas Fraction vs AGN Specific Accretion Rate

- No trend
- Large scatter
- CT AGN on average lower specific accretion rates than NLSy1 and average IbisCO

Feruglio in prep.
Conclusions

- AGN gas fractions similar to those of MS galaxies with similar masses (e.g. COLDGASS)

- Large scatter. Many outliers! both in IbisCO and other samples, with factor 3-10 smaller gas fraction

- For IbisCO the outliers are found when sampling the inner part of the galaxy

- No strong dependencies between gas fraction and AGN properties (L_{bol}, $L_{\text{bol}}/L_{\text{Edd}}$, specific accretion rate)