DISCOVERY OF A 4σ DEVIATION FROM ΛCDM USING THE HUBBLE DIAGRAM OF QUASARS

Elisabeta Lusso
Junior Research Fellow-CoFund

G. Risaliti (Uni. of Florence-INAF)

AGN13: Beauty and the Beast
Milano, 9-12 October 2018
The (tight) X-ray/UV non-linear relation

Log $L_X \sim 0.6 \log L_{UV} + 7$
$\sigma = 0.24$ dex!
Cosmology with quasars

The distance modulus

\[D_L(z, \Omega_M, \Omega_\Lambda) \]

\[\log(L_X) = \beta + \gamma \log(L_{UV}) \]

Standardise the quasar emission

\[\log(F_X) = \Phi(F_{UV}, D_L) \]

\[= \beta' + \gamma \log(F_{UV}) + 2(\gamma - 1)\log(D_L) \]

\[D_L(z, \Omega_M, \Omega_\Lambda) \]

The \(L_X-L_{UV} \) non-linear relation as a way to measure quasar distances

Elisabeta Lusso Junior Research Fellow

AGN13, Oct 9-12, 2018
Cosmology with quasars
The Quasars Hubble Diagram

~800 quasars

Supernovae Cosmology Project (Sullivan+11, Suzuki+12)
Cosmology with quasars

The Quasars Hubble Diagram

~800 quasars

Excellent agreement with SNe @ z=0.3-1.4

Supernovae Cosmology Project (Sullivan+11, Suzuki+12)
Cosmology with quasars
The Quasars Hubble Diagram

Test cosmological models in a poorly explored redshift range

Supernovae Cosmology Project (Sullivan+11, Suzuki+12)
Cosmology with quasars
The new! Quasars Hubble Diagram

~1600 quasars: SDSS+3XMM+XMM LP+archive/literature

Risaliti & Lusso submitted
The XMM-Newton program on z~3 quasars

~1Ms AO-16 (co-I, PI: Risaliti): 30 non-jetted SDSS quasars @z=3-3.3 observed for 25-35 ks
Cosmology with quasars

The new! Quasars Hubble Diagram: sample

~1600 quasars: SDSS+3XMM+XMM LP+archive/literature

\[
\begin{align*}
\text{E(B-V)<0.1} & \quad (N=5,377) \\
\Gamma>1.7 & \quad (N=4,026) \\
F_{\text{EXP}}<F_{\text{MIN}}+2\delta & \quad (N=3,409) \\
\text{TOTAL} & \quad N=7,075
\end{align*}
\]
Cosmology with quasars

The new! Quasars Hubble Diagram: L_X-L_{UV}

Risaliti & Lusso submitted

Elisabeta Lusso Junior Research Fellow

AGN13, Oct 9-12, 2018
Cosmology with quasars
The new! Quasars Hubble Diagram: redshift dependence

\[
\log D_L = \frac{1}{2-2\gamma} (\gamma \log F_{UV} - \log F_X) + \beta.
\]

Risaliti & Lusso submitted
Dispersion in the Hubble diagram

Risaliti & Lusso 2015
(800 QSOs)

Risaliti & Lusso, subm
(1,600 QSOs)

\(\Delta (\log D_L) \)

\(z \sim 3 \) QSOs

SN1a

Elisabeta Lusso Junior Research Fellow

AGN13, Oct 9-12, 2018
Cosmology with quasars
The new! Quasars Hubble Diagram

~1600 quasars: SDSS+3XMM+XMM LP+archive/literature

deviation from the ΛCDM model emerges at higher redshift, with a statistical significance of $\sim 4\sigma$!
Cosmology with quasars
The new! Quasars Hubble Diagram

Risaliti & Lusso submitted

Cosmographic approach

\[P[\log(1+z)] = D_L = k \Sigma_i a_i [\log(1+z)]^i \]
\[k = \ln(10)c/H_0 \]
\[a_2(\Omega_M), a_3(\Omega_M) \]

Intersections magenta lines and black curve are the points with \(w = 1 \) (left) and \(w = -1 \) (right), values of \(w \) decrease from left to right.

Data suggest: **dark energy density increasing with time**.

Within the \(w \)CDM model: \(\Omega_M > 0.3 \) and \(w < -1.3 \).
Cosmology with quasars

The new! Quasars Hubble Diagram

$w_0 - w_a$ plane where $w(z) = w_0 + w_a z / (1 + z)$, $w = -1$ no evolution data suggest: dark energy density increasing with time.

Within the ΛCDM model: $\Omega_M > 0.3$ and $w < -1.3$

Risaliti & Lusso (2017)

Risaliti & Lusso submitted
Cosmology with quasars

The new! Quasars Hubble Diagram

\(w_0-w_a \) plane where \(w(z)=w_0+w_a z/(1+z) \), \(w=-1 \) no evolution

Data suggest: **dark energy density increasing with time**.

Within the \(\Lambda \)CDM model: \(\Omega_M>0.3 \) and \(w<-1.3 \)
Do we need an extension to the ΛCDM? Yes, we do!

Shanks et al. 2018 ArXiv1810.02595
Riess et al. 2018 ArXiv1810.03526
To summarise

New branch of Observational Cosmology using Quasars are standard candles
Measure the Dark Matter & Energy content in the Cosmos
Deviation from the ΛCDM model at high redshift, with a statistical significance of $\sim 4\sigma$

Risaliti & Lusso (2017, AN, 201713351)