Photoevaporation of Molecular Clumps in Quasar Outflows

Photoevaporation of molecular clumps in quasar outflows Davide Decataldo

In collaboration with: A. Ferrara, S. Gallerani, A.Pallottini, L.Vallini

SCUOLA NORMALE SUPERIORE

Davide Decataldo

Molecular clumps in quasar outflows

- Detection of molecular outflows with [CII], CO, OH, HCN, ...
- Estimate of outflow rate, size and geometry

Velocity ~ 500 - 1000 km/s

Radial extension ~ kpc

Davide Decataldo

Outflow model: what we need to investigate

Davide Decataldo

Outflow model: what we need to investigate

Origin of molecules:

- Acceleration of existing MCs ?
- Formation in-situ by instabilities ?

Fate of molecules:

- Shock ablation of clumps
- Photoevaporation

Davide Decataldo

Set-up of the problem

 $L_{bol} = 10^{45} - 10^{47} \,\mathrm{erg}\,\mathrm{s}^{-1}$ $T_{\rm ICM} \simeq 2.2 \times 10^7 {\rm K}$ $n_{\rm ICM}\simeq 60\,{\rm cm}^{-3}$ $M_{\rm CLUMP} = 10 - 10^4 \,{\rm M_{\odot}}$ $T_{\rm H_2} \simeq 100 \,\rm K$ $R_{\rm crit} \simeq 500 \, M_8^{1/2} \, {\rm pc}$

from King (2010) outflow model

Effect of radiation on the clump structure

Decataldo et al. 2017

Ionizing spectrum:
 $L_{\nu} \propto \nu^{-1.5}$ FUV flux:
 $G_0 \simeq 10^{3-5}$

- Propagation of shocks at interfaces
- Interactions of shocks and rarefactions
- Spherical convergence

Clump evolution


```
D = 1 \,\mathrm{kpc}M_{\mathrm{CLUMP}} = 10^3 \,\mathrm{M}_{\odot}
```


Davide Decataldo

- Observed points lie above distance travelled by clumps formed at R_{crit}
- Clumps must also form at subsequent positions of the contact discontinuity

Davide Decataldo

Analytical model

NO cloud self-gravityNO radiative transfer

New simulation suite

- Poisson solver for gravity
- Radiation coupled with hydro
- Complex chemical network

 $M_{\rm cl} = 50 \,{\rm M}_{\odot}$ $R_{\rm cl} = 0.5 \,{\rm pc}$ $G_0 = 2 \times 10^4$

Davide Decataldo

 $M_{\rm cl} = 50 \,{\rm M}_{\odot}$ $R_{\rm cl} = 0.5 \,{\rm pc}$ $G_0 = 2 \times 10^4$

 $M_{\rm cl} = 50 \,{\rm M}_{\odot}$ $R_{\rm cl} = 0.5 \,{\rm pc}$ $G_0 = 2 \times 10^4$

Davide Decataldo

```
Milano, 11.10.2018
```


Davide Decataldo

R, n_{max} and M_{H2} time evolution

R, n_{max} and M_{H2} time evolution

New features:

- NO expansion phase after implosion
- Massive clumps do NOT evaporate ->

TRIGGERED STAR FORMATION ?

Davide Decataldo

Conclusions

New simulation suite for studying photoevaporation

FUTURE PROSPECT

Simulation of clumps in molecular outflows, including star formation

- Clumps can survive AGN radiation
- Photoevaporation is compatible
 with molecular outflow extension

Davide Decataldo