

The AGN fueling/feedback cycle in LERGs A multi-phase study of a sample of local early-type radio galaxies

Ilaria Ruffa (IRA-INAF/University of Bologna)

In collaboration with: Isabella Prandoni (IRA-INAF), Robert Laing (SKAO), Martin Bureau (Oxford University), Timothy Davis (Cardiff University), Paola Parma (IRA-INAF), Hans de Ruiter (IRA-INAF), Rosita Paladino (IRA-INAF)

> AGN 13: Beauty and the Beast Milano, 11 Ottobre 2018

The HERG and LERG paradigm

Two main class of radio galaxies in the local Universe:

The HERG and LERG paradigm

Two main class of radio galaxies in the local Universe:

High Excitation Radio Galaxies (HERGs):

- High-power (FRII)
- High accretion rates (M
 [^]>0.01M
 [^]_{edd})
- Radiative-mode AGN

Low Excitation Radio Galaxies (LERGs):

- Typically low-power (FRI)
- Low accretion rates ($\dot{M} \ll 0.01 \dot{M}_{edd}$)
- Jet-mode AGN

The HERG and LERG paradigm

Investigate the AGN feeding/feedback loop in a sample of 11 nearby LERGs selected from the Southern Parkes 2.7 GHz Survey

Role of the cold gas in fueling LERGs? Origin of the gas? Kinematics? Jets/ gas interaction?

The goal

Different galaxy components (stars, warm and cold gas, dust, radio jets) using multi-wavelength data

ALMA Cycle 3 CO (2-1) observations (Ruffa et al., submitted to MNRAS)

Archival plus proprietary VLA high-res. imaging (Ruffa et al., in prep.)

VLT/VIMOS integralfield-unit (IFU) spectroscopy + MUSE

(Warren et al., in prep.)

Archival HST data (or from ground telescopes, when useful)

APEX CO (2-1) integrated spectra (Prandoni et al. 2010, Laing et al. in prep.)

The dataset

ALMA Cycle 3 CO (2-1) observations (Ruffa et al., submitted to MNRAS)

Archival plus proprietary VLA high-res. imaging (Ruffa et al., in prep.)

VLT/VIMOS integralfield-unit (IFU)

The dataset

spectroscopy + MUSE

(Warren et al., in prep.)

Archival HST data (or from ground telescopes, when useful)

APEX CO (2-1) integrated spectra (Prandoni et al. 2010, Laing et al. in prep.)

ALMA observations

Cycle 3 CO(2-1) and 230 GHz continuum ALMA observations of 9 targets (PI: I. Prandoni). CO (2-1) detected in 6 out of 9 sources (Ruffa et al., submitted to MNRAS)

Target	Redshift	CO peak (mJy/beam)	SNR	Δ <i>ν</i> (km/s)	θ _{synth} ″ (pc)
IC 5131	0.0256	12.4	18	20	0.7 (360)
NGC 612	0.0298	18.3	14	20	0.3 (180)
PKS 0718-34	0.0284	<0.6	-	80	0.7 (400)
NGC 3100	0.0088	28.3	45	10	0.9 (160)
NGC 3557	0.0103	16.3	38	22	0.6 (130)
ESO 443-G 024	0.0170	<0.6	Min Aller	75	0.7 (240)
IC 4296	0.0125	2.0	8	40	0.6 (150)
NGC 7075	0.0185	4.0	10	40	0.6 (230)
IC 1459	0.0060	<1.8	A STATE	80	1.0 (120)

CO(2-1) detections

Ruffa et al., submitted to MNRAS

Dust and molecular gas

Archival HST images in the F555W filter. Resolution: 0.1 arcsec/pixel. CO moment 0 contours in red

Las Campanas Obs. image (300-400 nm). Resolution = 0.77 arcsec.

Evidences of dust and molecular gas co-spatiality

Ruffa et al., submitted to MNRAS

230 GHz continuum emission

IC 1531 230.61 GHz

0.1

NGC 612

10 5 0 -5 -10 -15 -20

20 15

PKS 0718-34

ESO 443-G 024

5 4 3 2 1 0 -1 -2 -3 -4 -5

- All the sources detected in continuum
- Six of them show extended emission from the jets, perfectly matching that visible in the archival radio images (1.4-10 GHz)

Ruffa et al., submitted to MNRAS

Jets and CO discs

- CO disc/jet axes aligned (in projection) in four cases (NGC 612, NGC 3100, IC 4296, NGC 7075)
 Significant misalignments in NGC 3557 and IC 1531
- Assuming dust/CO co-spatiality: consistence with results of de Ruiter (2002), de Koff (2000)
 Origin of the misalignment?

The case of NGC 3100

Ruffa et al., submitted to MNRAS

Warren et al., in prep.

- Possible external origin
- Best candidate for a jet/ISM interaction
- Requested (and obtained) 10 hours ALMA observations (PI: I. Ruffa) of different molecular transitions in NGC 3100

The case of NGC 3100

Ruffa et al., submitted to MNRAS

Warren et al., in prep.

- Possible external origin
- Best candidate for a jet/ISM interaction
- Requested (and obtained) 10 hours ALMA observations (PI: I. Ruffa) of different molecular transitions in NGC 3100

Future perspectives

- Detailed analysis of the kinematics of the six CO(2-1) detections (Ruffa et al., in prep)
- Detailed analysis of the radio jets using recently acquired high-resolution JVLA 10 GHz continuum data (Ruffa et al., in prep)
- Detailed comparison with optical VIMOS/IFU data (Warren et al., in prep)

Future perspectives

<section-header><section-header><section-header><section-header><section-header><text>