

AGN13 - Beauty and the Beast

Milano - October 11, 2018

Outflows vs star formation in nearby AGN from the MAGNUM survey

Giacomo Venturi

PhD student at University of Florence / INAF - Osservatorio Astrofisico di Arcetri

in collaboration with

A. Marconi (P.I.), M. Mingozzi, E. Nardini, S. Carniani, R. Maiolino, G. Cresci et al.

Galaxy evolution: the need for feedback

2) Galaxy bimodality

4) Galaxy luminosity function

Searching for feedback in action

Feedback from radio jets in massive elliptical galaxies

Balmaverde, GV+18

Feedback from outflows in powerful quasars at peak of AGN activity $z \sim 1-3$

Carniani+15,16 ^z

Searching for feedback in action

Feedback from radio jets in massive elliptical galaxies

Balmaverde, GV+18

Feedback from outflows in powerful quasars at peak of AGN activity $z \sim 1-3$

...but low-resolution, difficult to study in detail feedback and outflow physical properties

G. Venturi

MAGNUM survey

Nearby (*D* < 50 Mpc) Seyferts with VLT/MUSE

to characterize feedback and outflow properties in detail

FOV covers 1 to 15 kpc with resolution: 15 pc (@4Mpc) to 115 pc (@30Mpc)

Venturi+17, Mingozzi+subm.

G. Venturi

Detailed study of ionized gas in the central kpcs of NGC 1365:

AGN vs star formation, mapping the outflow properties

from optical (MUSE) and X-ray (Chandra) data

Venturi et al., 2018

G. Venturi

Massive barred galaxy (4×10¹¹ M_{\odot}) hosting a low-luminosity AGN: $L_{AGN} \sim 2 \times 10^{43}$ erg/s

Spatial res. $-> \sim 60 \text{ pc}$

Massive barred galaxy ($4 \times 10^{11} M_{\odot}$) hosting a low-luminosity AGN: $L_{AGN} \sim 2 \times 10^{43} \text{ erg/s}$ Star formation (~7 M_☉/yr): Hα follows dust lanes along the bar + circumnuclear ring (~5.6 M_☉/yr)

Spatial res. $-> \sim 60$ pc

 30

Massive barred galaxy (4×10¹¹ M_{\odot}) hosting a low-luminosity AGN: $L_{AGN} \sim 2 \times 10^{43}$ erg/s Star formation (~7 M_☉/yr): Hα follows dust lanes along the bar + circumnuclear ring (~5.6 M_☉/yr) Density from [SII] doublet up to 10³ cm⁻³ in the ring

Spatial res. $-> \sim 60$ pc

Massive barred galaxy ($4 \times 10^{11} M_{\odot}$) hosting a low-luminosity AGN: $L_{AGN} \sim 2 \times 10^{43} \text{ erg/s}$ Star formation (~7 M_☉/yr): Hα follows dust lanes along the bar + circumnuclear ring (~5.6 M_☉/yr)

[OIII] ⊥ double cone
SE less obscured
→ above disk,
NW → behind disk

NGC 1365: source of gas ionization

 $\Delta RA [arcsecs]$

[OIII]

NGC 1365: double-conical outflow

Outflow spatially traced by motions deviating from rotation

G. Venturi

Outflow sliced in a grid to separate

outflow from disk component in fitting

G. Venturi

Outflows vs star formation in nearby AGN from the MAGNUM survey

Radial profiles as a function of distance from the AGN

Decreasing trend with distance

(see also Karouzos+16a,16b, Bae +17, Crenshaw+15, Revalski+18)

- AGN more powerful recently than in the past
- Outflow does mass
 loading and slows down
 (but we don't see mass
 radially increasing)
- We sample only ionized gas (lacking neutral atomic + molecular), which depends on ionizing flux ∝ r⁻²

Radial profiles as a function of distance from the AGN

*M*_{ion} ≪ SFR (7 M_☉/yr)
 —> outflow unable to affect SF
 (at least in the ionized phase only)

G. Venturi

Radial profiles as a function of distance from the AGN

G. Venturi

Radial profiles as a function of distance from the AGN

• Energy-driven: $\dot{E}_{k,ion} \lesssim 10^{-3} \dot{E}_{k,X}$ -> would need too much neutral atomic + molecular for $\dot{E}_{k,tot} \sim \dot{E}_{k,X}$ (see Carniani+15, Fiore +17, Fluetsch+18)

• Direct AGN radiation pressure on dusty clouds (e.g. Thomson +15, Ishibashi+18): $\dot{p}_{ion} \leq 1/20 L_{AGN}/c$ (models: $\dot{p}_{tot} \sim 1.5 L_{AGN}/c$) -> in principle could be the driver

Star formation within the outflow

in star-forming galaxy NGC 6810

(Venturi et al., in prep.)

G. Venturi

Outflows can also form stars

Models predict new mode of star formation: stars are created with high velocities on ~radial orbits, contributing to bulge of galaxies and enriching CGM/IGM

(Silk+12,17, Ishibashi&Fabian14,15, Zubovas+13, Zubovas&King13, Nayakshin&Zubovas 12, Gaibler+12)

Outflows can also form stars

Models predict new mode of star formation: stars are created with high velocities on ~radial orbits, contributing to bulge of galaxies and enriching CGM/IGM

(Silk+12,17, Ishibashi&Fabian14,15, Zubovas+13, Zubovas&King13, Nayakshin&Zubovas 12, Gaibler+12)

Widespread evidence in our galaxy

Zavagno+10, Lim+18, Dwarkadas+17, Duronea+17, Deharveng+15, Dewangan+12, Thompson+12, Brand+11 Stars form in the shocked front

So why not also in galactic outflows?

G. Venturi

Outflows can also form stars

Models predict new mode of star formation: stars are created with high velocities on ~radial orbits, contributing to bulge of galaxies and enriching CGM/IGM

(Silk+12,17, Ishibashi&Fabian14,15, Zubovas+13, Zubovas&King13, Nayakshin&Zubovas 12, Gaibler+12)

Widespread evidence in our galaxy

Zavagno+10, Lim+18, Dwarkadas+17, Duronea+17, Deharveng+15, Dewangan+12, Thompson+12, Brand+11 Stars form in the shocked front

First observational evidence of star formation inside an AGN-driven outflow

So why not also in galactic outflows?

G. Venturi

NGC 6810

Star-forming galaxy: no trace of AGN from optical diagnostics, hard Xrays, MIR or radio

Bipolar starburst outflow

NGC 6810

Star-forming galaxy: no trace of AGN from optical diagnostics, hard Xrays, MIR or radio

Bipolar starburst outflow

[SII] BPT spatial distribution

Grid to separate outflow

from disk in fitting

BPT diagram only for outflow component

[SI] BPT spatial distribution

Grid to separate outflow from disk in fitting

Outflowing1. Star formation
within outflow!cones have SF-2. Ionizing photons
simply come from
SF in the disk...

Conclusions

- MAGNUM survey: ionized gas kinematics and ionization, outflows and feedback in nearby AGN down to ~10 pc with VLT/MUSE
- NGC 1365 (Venturi et al. 2018)
 - Hα —> star formation in disk/bar; [OIII] —> AGN-ionized double-conical kpcscale outflow —> outflow not broad wing like at low-resolution in more powerful objects
 - Radial profiles of outflow velocity, mass outflow, kinetic and momentum rate
 —> decrease at larger distance: AGN more powerful recently? mass loading?
 - Extended vs nuclear X-ray wind —> energy- and momentum-driven scenarios unlikely, radiation pressure-driven feasible. Molecular gas needed
- NGC 6810 (Venturi et al., in prep.)
 - First detection of star formation within galactic outflow in an unambiguous star-forming galaxy (not AGN)

Far from center of NGC6810 [SIII] is really faint —> [OIII]∝[SIII] —> use [OIII]/[SII] instead of [SIII]/[SII] as proxy of ionization parameter

Outflow density in NGC 6810

Ionization parameter $U \propto \text{flux/density} \propto r^{-2} n_{e}^{-1}$

Typical gas densities for local star-forming galaxies: $n_{\rm e} \sim 20-30 \ {\rm cm}^{-3}$ (e.g. Sanders+16, Kaasinen+17)

NGC 1365: MUSE-Chandra matching

Compare ionization of warm ionized gas (MUSE) with hot highly-ionized gas from Chandra ACIS-S (X-ray IFU)

NGC 1365: MUSE-Chandra matching

G. Venturi

Comparison with AGN outflow samples

NGC 1365: kinematics of ionised gas

