Probing clustering of X-ray AGN using Chandra COSMOS Legacy

Viola Allevato

A. Ferrara, F. Civano, A. Viitanen, A. Finoguenov,, N. Cappelluti, F. Shankar, T. Miyaji, G. Hasinger, and COSMOS Team

AGN13, Milano 9-12 Ottobre

Clustering Analysis

Clustering provides a unique way to study:

How AGN populate DMHs;
(Relative fraction of AGN in satellite and central halos)

Typical AGN environment;

(Bias and DMH mass)

► AGN Evolutionary Models;

• AGN **triggering** mechanisms;

Clustering of QSO

Luminous quasars logL_{bol} >46 erg/s reside in DMHs with typical mass of

~ $3 \times 10^{12} M_{sun}/h$ up to z = 2-3

e.g. Croom et al. 2005, 2009, Da Angela et al. 2005, 2008, Shen et al. 2008, Ross et al. 2009

Major merger models reproduce the observed quasar clustering and bias as a function of L and z;

Hopking et al. 2007, 2008, Shen 2009, Shankar et al. 2009, 2010, Bonoli et al. 2009

Clustering of X-ray AGN

Moderate luminosity AGN reside in DMHs with typical mass of ~ 10¹³ M_{sun}/h up to z~2-3

e.g. Hickox et al. 2009, **Allevato et al. 2011,2012, 2014, 2016**, Starikova et al. 2012, Krumpe et al. 2012, Koutoulidis et al. 2013

This difference in halo mass is interpreted as evidence against cold gas accretion via major mergers in X-ray AGNs and/or as support for multiple modes of BH accretions.

Allevato et al. 2011, Fanidakis et al. 2013, Mountrichas & Georgakakis 2012

Type 1 & 2 AGN

AGN Host Galaxies

Can AGN clustering be entirely understood in terms of galaxy clustering and AGN selection effect?

SCUOLA Normale Superiore

Viola Allevato

AGN Host Galaxies

Can AGN clustering be entirely understood in terms of galaxy clustering and AGN selection effect?

SCUOLA Normale Superiore

Viola Allevato

BH mass and Eddingtion Ratio

• Weak clustering dependence with M_{BH} and L/L_{EDD} in the locale Universe;

Viola Allevato

SUPERIORE

Chandra COSMOS Legacy

- CCL source catalog : 4016 sources (Civano et al. 2016)
- 3886 CCL AGN with optical counterparts and photo-z (Marchesi et al. 2016a)

	Total (P>2x10-5)	Spec-z	Photo-z
Number	4016	2151	3872
	(1887 in XMM)	(53.6 %)	(96%)

- CCL AGN host galaxies (2300 Type 2) (Suh et al. 2017)
- Properties of XMM AGN host galaxies; (Bongiorno et al. 2012)

CCL + XMM AGN

BH Accretion Rate

- We split the CCLXMM AGN sample based on: •
 - Host galaxy stellar mass

SUPERIORE

- Specific BH Accretion rate

Galaxy stellar Mass

- We split the CCLXMM AGN sample based on:
 - Host galaxy stellar mass
 - Specific BH Accretion rate

Generalised Estimator

Classic LS estimator

 $DD(\sigma,\pi)_k = DD(\sigma,\pi)_{k-1} + 1$

Generalised LS estimator

 $DD(\sigma,\pi) = DD(\sigma,\pi) + Pdf_{k1}(z=z_i)Pdf_{k2}(z=z_j)$

Georgakakis et al. 2014, Allevato et al. 2016

AGN bias

Weak clustering dependence with M_{star} and BH SAR at $z\sim 1.2$

Viola Allevato

Bias vs Mstar - I

- Positive clustering dependence with M_{star} at z~1.2
- Typical halo mass expected for these hosting galaxy mass M_{star} (Moster et al. 2013, Berhoozi et al. 2013)

Bias vs Mstar - I

- Positive clustering dependence with M_{star} at z~1.2
- Typical halo mass expected for these hosting galaxy mass M_{star} (Moster et al. 2013, Berhoozi et al. 2013)
- Same evolution for Type 1 and Type 2 at z~1.2

Bias vs BHAR

- Mock predicts no clustering dependence with BHAR in this range at z~1.2
- Same dependence for Type I and Type 2

Conclusions

- First clustering measurements as a function of BH Specific Accretion Rate and host stellar mass at z=1.2;
- Weak clustering dependence with M_{star} and BH Specific Accretion Rate for Type 2 AGN;
- Similar clustering dependence for Type I and Type 2 AGN;

Future Plan

- Clustering measurements as a function of obscuration;
- I-halo term;