Coronal parameters in Seyfert galaxies: the NuSTAR view and the future IXPE perspectives

Alessia Tortosa AGN 13 -10/10/2018 - Milan

NOIZAN

X-RAY CORONAE

Two Phase Model:

- Hot, optically thin, X-ray emitting corona;
- Cold, optically thick, UV-optical emitting accretion disc.

Primary Power-law: with photon index and cutoff energy directly related to the temperature and to the optical depth of the coronal plasma. Comptonization models imply $Ec=2-3 \times kTe$. **Reprocessed Emission:** Typical Xray features of the reflection by cold circumnuclear material include intense Fe k α line at 6.4 keV and the associated Compton reflection continuum peaking at ~30 keV.

Alessia Tortosa

AGN 13 - 9-12/10/2018

- Milan

Analysis of a sample to have insights into the average properties of AGN.

- Non-Focusing and therefore backgrounddominated instruments (BeppoSAX, INTEGRAL, Swift);
- Degeneracies between parameters;
- Uncertainties;
- High energy cutoff values correlated with the photon index of the primary emission.

3

Photon index - cutoff correlation in the BeppoSAX sample

New observations of *NuSTAR*, XMM-*Newton* and *Swift* X-ray satellites & archival data.

19 Bright Nearby Seyfert Galaxies:

- Unobscured ($N_{\rm H} \le 6 \times 10^{22} {\rm cm}^{-2}$), to have a clear view of the primary emission component;
- Present in the Swift-BAT 70-month catalogue;
- Observed by NuSTAR and other X-rays observatories;
- Objects for which the cut-off energy had been left fixed in the spectral analysis are not included (e.g. 1H0707-495)

THE SAMPLE

Source	Ref.	Г	E_c	$log(M_{bh}/M_{\odot})$	Ref.	L_{bol}/L_{Edd}	$L_{2-10keV}$	F _{2-10keV}	kT _e	τ	geom.	model
			[keV]				ergs s ⁻¹	erg cm ⁻² s ⁻¹	[keV]			
NGC 5506	1	1.91 ± 0.03	720^{+130}_{-190}	8.0 ± 0.2	(A)	0.006	0.053	6.2	440^{+230}_{-250}	$0.02^{+0.2}_{-0.01}$	slab	COMPTT
									440^{+230}_{-250}	$0.09^{+0.2}_{-0.01}$	sphere	COMPTT
MCG -05-23-16	2	1.85 ± 0.01	170 ± 5	7.7 ± 0.2	(B)	0.058	0.18	10.4	30 ± 2	1.2 ± 0.1	slab	COMPTT
									25 ± 2	3.5 ± 0.02	sphere	COMPTT
SWIFT J2127.4	3-4	2.08 ± 0.01	180^{+75}_{-40}	7.2 ± 0.2	(J)	0.136	0.14	2.9	70^{+40}_{-30}	$0.5^{+0.3}_{-0.2}$	slab	COMPTT
									50^{+30}_{-25}	$1.4^{+1.0}_{-0.7}$	sphere	COMPTT
IC4329A	5-6	1.73 ± 0.01	185 ± 15	8.08 ± 0.3	(N)	0.125	0.56	12.0	37 ± 7	1.3 ± 0.1	slab	COMPTT
									33 ± 6	3.4 ± 0.5	sphere	COMPTT
3C390.3	7	1.70 ± 0.01	120 ± 20	8.4 ± 0.4	(H)	0.241	1.81	4.03	40 ± 20	$3.3^{+1.3}_{-2.8}$	sphere	COMPTT
3C382	8	1.68 ± 0.03	215^{+150}_{-60}	9.2 ± 0.5	(D)	0.072	2.34	2.9	330 ± 30	0.2 ± 0.02	slab	COMPTT
GRS 1734-292	9	1.65 ± 0.05	53 ± 10	8.5 ± 0.1	(L)	0.036	0.056	2.9	12 ± 1	2.9 ± 0.2	slab	COMPTT
									$12^{+1.7}_{-1.2}$	6.3 ± 0.3	sphere	COMPTT
NGC 6814	10	1.71 ± 0.04	135^{+70}_{-35}	7.0 ± 0.1	(C)	0.003	0.021	0.2	45^{+100}_{-20}	$2.5^{\dagger} \pm 0.5$	sphere	NTHCOMP
MCG +8-11-11	10	1.77 ± 0.04	175^{+110}_{-50}	7.2 ± 0.2	(E)	0.754	0.51	5.6	60^{+110}_{-30}	$1.9^{\dagger} \pm 0.4$	sphere	NTHCOMP
Ark 564	11	2.27 ± 0.08	42 ± 3	6.8 ± 0.5	(H)	1.313	0.39	-	15 ± 2	$2.7^{\dagger} \pm 0.2$	sphere	NTHCOMP
PG 1247+267	12-13	2.35 ± 0.09	90^{+130}_{-35}	8.9 ± 0.2	(M)	0.11	0.79	0.05	46^{+60}_{-20}	$1.4^{\dagger} \pm 0.3$	sphere	NTHCOMP
Ark 120	14-15	1.87 ± 0.02	180_{-40}^{+80}	8.2 ± 0.1	(H)	0.085	0.92	2.3	-	-	-	-
NGC 7213	16	1.84 ± 0.03	> 140	8.0 ± 0.2	(G)	0.001	0.012	1.3	230^{+70}_{-250}	0.2 ± 0.1	sphere	COMPPS
MCG 6-30-15	17-18	2.06 ± 0.01	> 110	6.4 ± 0.1	(E)	0.238	0.056	5.5	-	-	-	-
NGC 2110	19	1.65 ± 0.03	> 210	8.3 ± 0.2	(K)	0.016	0.35	12.5	190 ± 130	0.2 ± 0.1	slab	COMPTT
Mrk 335	21-22	2.14 ± 0.03	> 174	7.2 ± 0.1	(H)	0.284	0.18	1.9	-	-	-	-
Fairall 9	20	1.95 ± 0.02	> 242	8.1 ± 0.7	(H)	0.054	0.60	2.9	-	-	-	-
Mrk 766	17-23-24	2.22 ± 0.03	> 441	6.3 ± 0.1	(I)	1.254	0.046	1.4	-	-	-	-
PG 1211+143	26	2.51 ± 0.2	> 124	8.2 ± 0.2	(H)	0.047	0.35	1.0	-	-	-	-
	Ale	ssia Toi	rtosa	- A(GN	13 -	9-12	/10/201	8 -	Milan		5

Distribution of some of the investigated parameters: measure slab 🔲 slab lower limit sphere sphere 6 6 sources Number of sources sources 10x 100 200 5 200 00 4 of of 2 Number Number o A ONOSA Kotos 3 3 2 1 100 200 300 400 0 1 2 3 4 5 0 100 200 300 400 500 600 700 optical depth(τ) kT_e[keV] E_c[keV]

 Search for correlations between spectral and physical parameters to have an overview of the physics and the structure of the hot corona

Х	Y	ρ	h_0	geometry
Γ	E _c	0.18	0.47	-
$\log(M_{bh}/M_{\odot})$	E_c	-0.11	0.61	-
L_{bol}/L_{Edd}	E_c	-0.14	0.56	-
au	kT _e	-0.88	0.004	slab
au	kT _e	-0.63	0.02	sphere
$log(M_{bh}/M_{\odot})$	au	-0.22	0.63	slab
$\log(M_{bh}/M_{\odot})$	au	-0.26	0.46	sphere
L_{bol}/L_{Edd}	au	0.49	0.27	slab
L_{bol}/L_{Edd}	au	0.38	0.28	sphere
$\log(M_{bh}/M_{\odot})$	kT _e	0.20	0.64	slab
$\log(M_{bh}/M_{\odot})$	kT _e	0.18	0.47	sphere
L_{bol}/L_{Edd}	kT _e	-0.37	0.41	slab
L_{bol}/L_{Edd}	kT _e	-0.36	0.32	sphere

RESULTS

- Search for correlations between spectral and physical parameters to have an overview of the physics and the structure of the hot corona
- The only correlation found is between the optical depth and the coronal temperature in both spherical and slab geometry of the corona.

RESULTS

The parameters are model-dependent <u>BUT</u> they are obtained with different models!

Double check on NGC 5506, GRS 1734-292 and MCG -05-23-16 which have the most extreme values of τ and kT_e

CORONAL PARAMETERS

Why are τ and kT_e strongly anti-correlated?

Variation of the intrinsic disk emission.

↑ disc intrinsic emission ,↑ corona cooling, ↓ temperature.

NGC 5506 : ↓ disc intrinsic emission

GRS 1734-292 : 1 disc intrinsic emission

ASTROPHYSICS WITH IXPE (IMAGING X-RAY POLARIMETRY EXPLORER)

ALESSIA TORTOSA

NASA SMEX Missions in development; it will fly in April 2021

- 40 years from the last positive measurement;
- 2 order of magnitude more sensitive over the X-ray polarimeter aboard the Orbiting Solar Observatory OSO8;
- Dramatic improvement in sensitivity: from one to hundred sources!

X-ray polarimetry will open a new observational window, adding the two missing observables in X-rays: **polarization degree & angle**.

Scientific topics:

- Acceleration phenomena
- Pulsar wind nebulae
- SNR
- Jets
- Emission in strong magnetic fields
- Pulsars, Magnetars
- AGN & XRB
- QED effects
- GR effects close to accreting BHs
- Quantum gravity

IXPE is going to observe almost all classes of X-ray sources.

HOT CORONAE AND POLARIZATION

The Comptonization process imprints weak, energy dependent, polarization features on the emerging spectra.

These polarization features depend on the relative geometry of the incident photons and scattering electrons.

The geometry is related to the corona origin:

Slab – high polarization (up to more than 10%): disc instabilities

Sphere – very low polarization: aborted jet?

The AGN X-ray emission depends on the scattering processes in the corona. This dependency makes polarization studies a promising way to distinguish between different corona geometries.

Primary X-ray emission is expected to be polarized, the polarization degree depending mainly on the geometry and optical depth of the corona.

Primary X-ray emission is expected to be polarized, the polarization degree depending mainly on the geometry and optical depth of the corona.

CYGNUS X-1 SIMULATIONS

Alessia Tortosa

AGN 13 - 9-12/10/2018

Milan

-

CYGNUS X-1 SIMULATIONS

CONCLUSIONS

- Solution No correlation between E_c and Γ ;
- No large systematics in the NuSTAR measurements;
- Strong anti-correlation between the τ and kT_e in slab or spherical geometries;
- Disk-corona in radiative equilibrium, but requires differences, from source to source, in either the coronal geometry or in the intrinsic disk emission;
- In none of the objects of the sample, X-ray spectroscopy has led to a clear discrimination between different coronal geometries.
- Waiting for IXPE for better results and discrimination about coronal geometry.

THANK YOU!!!

