Estimating coronal parameters using MoCA MonteCarlo code for accretion in astrophysic

AGN13 BEAUTY and the BEAST

Riccardo Middei

Stefano Bianchi, Giorgio Matt, Andrea Marinucci, Francesco Tamborra Alessia Tortosa

The Complex AGN spectrum:

AGN X-ray continuum can be interpreted as the effect of inverse-Compton scattering

The Complex AGN spectrum:

AGN X-ray continuum can be interpreted as the effect of inverse-Compton scattering

Properties of the emitting corona are largely unknown.

Various high energy cut-off estimates

Various high energy cut-off estimates

a number of cut-off measurements in AGN

Source	Ref.	Г	E_c	$\rm log(M_{bh}/M_{\odot})$	Ref.	$\rm L_{bol}/L_{Edd}$	$\mathbf{L}_{2-10keV}$	$F_{2-10keV}$
Adapted from Tortosa et al. 2018			[keV]				$ergs s^{-1}$	erg cm $^{-2}$ s $^{-1}$
NGC 5506	1	1.91 ± 0.03	720+130	8.0 ± 0.2	(A)	0.006	0.053	6.2
MCG -05-23-16	2	1.85 ± 0.01	170 ± 5	7.7 ± 0.2	(B)	0.058	0.18	10.4
SWIFT J2127.4	3-4	2.08 ± 0.01	180^{+75}_{-40}	7.2 ± 0.2	(J)	0.136	0.14	2.9
IC4329A	5-6	1.73 ± 0.01	185 ± 15	8.08 ± 0.3	(N)	0.125	0.56	12.0
3C390.3	7	1.70 ± 0.01	120 ± 20	8.4 ± 0.4	(H)	0.241	1.81	4.03
3C382	8	1.68 ± 0.03	215^{+150}_{-60}	9.2 ± 0.5	(D)	0.072	2.34	2.9
GRS 1734-292	9	1.65 ± 0.05	53 ± 10	8.5 ± 0.1	(L)	0.036	0.056	2.9
NGC 6814	10	1.71 ± 0.04	135^{+70}_{-35}	7.0 ± 0.1	(C)	0.003	0.021	0.2
MCG +8-11-11	10	1.77 ± 0.04	175^{+110}_{-50}	7.2 ± 0.2	(E)	0.754	0.51	5.6
Ark 564	11	2.27 ± 0.08	42 ± 3	6.8 ± 0.5	(H)	1.313	0.39	-
PG 1247+267	12-13	2.35 ± 0.09	90 ⁺¹³⁰ -35	8.9 ± 0.2	(M)	0.024	0.79	0.05
Ark 120	14-15	1.87 ± 0.02	180+80	8.2 ± 0.1	(H)	0.085	0.92	2.3

NuSTAR high energy cut-off

Tortosa et al., 2018

See also Fabian et al., 2015,2017 Shall we connect phenomenological parameters such as the photon index and the high energy cut-off with the physics of the Comptonising corona?

MoCA:

a Monte Carlo code for accretion in Astrophysics

Tamborra et al., 2018

Assumptions: 1. Shakura-Sunyaev neutral accretion disc 2. Extended coronae 3. Single photon approach 4. Full special relativity included 5. Polarization signal

Suitable for studying various astrophysical sources

Tuning MoCA:

Sphere geometry 0.5<τ<7 10<kT<120 keV R_{in}=6 R_{grav} R_{out}=500 R_{grav} Slab geometry 0.5<τ<4.5 10<kT<120 keV H=10 R_{grav} R_{in}=6 R_{grav} R_{out}=500 R_{grav} Step 1: AGN properties M_{BH} =1.5x10⁸ M_O M=0.01 in units of L/L_{edd}

as for Ark120

e.g. Porquet et al., 2018,

Reeves et al., 2016 Nardini et al., 2016

Lobban, et al., 2017

Step 2: Assuming a geometry

Step 4: fitting synthetic spectra with a cut-off power-law

Connecting the spectral Γ with τ and y

Connecting the spectral $E_{cut-off}$ with τ and kT

 $log E_{c}(\tau, kT) = \alpha(\tau) log kT + \beta(\tau)$ $\alpha(\tau) = -0.285 \pm 0.04 \times \tau + 2.61 \pm 0.2$ $\beta(\tau) = 0.558 \pm 0.08 \times \tau - 2.69 \pm 0.34$

Most popular models implying E_{cut} =2-3x kT_e (Petrucci et al., 2000,2001) not always working

 $log E_{c}(\tau, kT) = \alpha(\tau) log kT + \beta(\tau)$ $\alpha(\tau) = -0.19 \pm 0.04 \times \tau + 2.26 \pm 0.13$ $\beta(\tau) = 0.398 \pm 0.08 \times \tau - 1.87 \pm 0.23$

Connecting the physics of the corona with the phenomenological spectral properties

Hands on, from $E_{_{cut}}$ & Γ into kT & τ

a few examples...

take home message

MoCA can be exploited for studying the X-ray AGN emission

It is possible to exclude regions in the τ and kT parameters space

We find that both E_{cut} and Γ are functions of kT and τ

We derive relations connecting the MoCA Γ and E_{cut} with kT and τ for the slab and spherical geometry

more details soon, Middei et al., is in ongoing :)