

ISTITUTO NAZIONALE DI ASTROFISICA OSSERVATORIO ASTRONOMICO DI BRERA

Jetted Active Galactic Nuclei

Luigi Foschini

Istituto Nazionale di Astrofisica Osservatorio Astronomico di Brera Milano, Merate (LC)

Foreword

- The **aim of this talk** is to draw your attention on some old and new discoveries on relativistic jets, and how to include them into a unified physical model for jetted AGN;
- This is **not** a challenge to the current unified model, but rather the request for an update and an improvement;
- Martin Gaskell in *Fifty years of quasars* (2012):

"[...] I tell students that classification is one of the first step in science. As science progresses, however, I believe that we need to move toward <u>physically meaningful</u> <u>classification schemes</u> as soon as possible. To achieve this, we need to be willing to modify our definitions, or else we can impede progress."

Evolution of terminology and classification:

1978, Ed Spiegel, Pittsburgh conference social dinner:

- <u>**B**</u>L <u>**La**</u>c Objects + Optically Violently Variable Qua<u>sars</u> (OVV) \rightarrow **Blazars**
- 1994-1995 Giommi & Padovani:
 - Radio selected BL Lac (RBL) \rightarrow Low-energy cutoff BL Lacs (LBL)
 - X-ray selected BL Lac (XBL) \rightarrow High-energy cutoff BL Lacs (HBL)
- 1994, Laing:

•

٠

- FRI, FRII → Low-Excitation Radio Galaxies (LERG), High-Excitation Radio Galaxies (HERG)
- 2017, Padovani:
 - Radio-Loud AGN \rightarrow Jetted AGN
 - Radio-Quiet AGN \rightarrow Non-jetted AGN

The Unified Scheme by Urry & Padovani (1995)

	Type 2 (Narrow Line)	Type 1 (Broad Line)	Type 0 (Unusual)
Radio-quiet:	Sy 2 Nelg	Sy 1	
	IR Quasar?	QSO	BAL QSO? H Sj
Badia landa	NURC (FR I	BLRG	BL Lac Objects
Radio-ioud:	FR II	SSRQ	(FSRQ)
		FSRQ	•

The Unified Scheme by Urry & Padovani (1995) AGN Radio-quiet Radio-loud Radio Blazars Galaxies Seyfert QSO Weak Strong Lines Lines Broad Narrow Lines Lines misaligned aligned FR1 aligned FR2 **FR 1** FR 2 Flat Spectrum BL Lac Sy 1 Sy 2 Radio Quasars Objects (FSRQ)

Today, still more or less unchanged... (Dermer & Giebels 2016)

Radio-Loud AGN (Urry & Padovani 1995)

Radio-Loud AGN	Strong Emission Lines (Photon-rich environment)	Weak/No Emission Lines (Photon-starving environment)
Beamed (blazar)	FSRQ	BL Lac Obj
Unbeamed (radio galaxy)	HERG (FRII)	LERG (FRI+FRII)

- High mass central black hole (≥10⁸M_☉, e.g. Ghisellini et al. 2010, Buttiglione et al. 2010, Tadhunter 2016);
 - Mass threshold for jet generation? (e.g. Laor 2000, Chiaberge & Marconi 2011)
- Giant Elliptical host galaxy (e.g. McLure et al. 1999, Urry et al. 2000, Dunlop et al. 2003);
- Jet power scaled by electron cooling (*blazar sequence*, Fossati et al. 1998, Ghisellini et al. 1998).

Radio-Loud AGN (Urry & Padovani 1995)

Radio-Loud AGN	Strong Emission Lines (Photon-rich environment)	Weak/No Emission Lines (Photon-starving environment)
Beamed (blazar)	FSRQ	BL Lac Obj
Unbeamed (radio galaxy)	HERG (FRII)	LERG (FRI+FRII)

- High mass central black hole (≥10⁸M_☉, e.g. Ghisellini et al. 2010, Buttiglione et al. 2010, Tadhunter 2016);
 - Mass threshold for jet generation? (e.g. Laor 2000, Chiaberge & Marconi 2011)
- Giant Elliptical host galaxy (e.g. McLure et al. 1999, Urry et al. 2000, Dunlop et al. 2003);
- Jet power scaled by electron cooling (*blazar sequence*, Fossati et al. 1998, Ghisellini et al. 1998).

That's all well and good, but...

Radio Loud/Quiet: Not a bimodal distribution!

FIG. 15.—Left: Histogram of radio-optical ratio R^* (Stocke et al. 1992) for FBQS quasars. Shaded area represents previously known quasars. The dotted histogram includes R^* upper limits for Véron catalog objects in the FBQS area but not detected by FIRST. The Véron quasars (shaded plus dotted histograms) show a bimodal distribution of R^* , with a dip around $R^* = 3-30$, but the FBQS quasar counts rise continuously through that region and show no obviously evidence for bimodality. Right: Fraction of newly discovered quasars vs. R^* . The FBQS is increasing the number of known objects in the radio-quiet/radio-loud transition region ($R^* = 1-100$) by a large factor.

White et al. (2000)

Lähteenmäki et al. (2018)

Metsähovi Radio Telescope (Finland)

0.8

0.7

0.6

Flux density [Jy] 0.5 0.4 0.3

0.2

0.1

0.8

0.7

Flux density [Jy] 0.2 0.3

0.2

0.1

These NLS1s were never detected in any previous survey at any radio frequency!

Radio detection at 37 GHz of radio-silent NLS1s **Radio-Loud/-Quiet: Meaningless!**

AGN13 Beauty and the Beast, Milano, 9-12 October 2018

Small-mass/compact radio sources were present in early surveys (1979), but were lost when focusing on bright sources (1986)

Host Galaxy

- Urry et al. (2000):
 - 110 BL Lac Objects, z < 1.3
 - Most host galaxies are ellipticals, 1 disk galaxy, many unresolved or doubtful (>> disk < 8%)
- McLure et al. (1999), Dunlop et al. (2003):
 - 13 radio-quiet quasars; 10 radio-loud quasars; 10 radio galaxies (0.1 < z < 0.25)
 - $M_V <-23.5 \rightarrow \underline{all}$ the hosts are giant elliptical galaxies!
 - Both radio-loud and radio-quiet quasars: jet does not matter
 - $M_{BH} \gtrsim 5 \times 10^8 M_{\odot}; M_{BH,jet} \gtrsim 10^9 M_{\odot};$

Hamilton et al. (2002, 2008):

- 70 quasars, $M_V \le 23$, $0.06 \le z \le 0.46$
- 43 radio-quiet, 26 radio-loud, 1 unknown
- 24 spirals (4 radio-loud), 46 ellipticals (22 radio-quiet)

• Inskip et al. (2010): 2Jy sample $(0.03 \le z \le 0.5)$, 41 sources, 12% disk galaxies;

Powerful Relativistic Jet in Disk Galaxies...

- Coziol et al. (2017): SDSS ($z \le 0.3$), 1953 sources, 22% radio-loud (430)
 - Radio morphology vs Host Galaxy:
 - Compact (53% Elliptical; 47% Spiral)
 - Core + Jet (90% Elliptical; 10% Spiral)
 - One lobe (100% Elliptical)
 - Two lobes (64% Elliptical; 36% Spiral)
 - Compact weak radio sources have smaller BH masses (confirm 1979 Miley & Miller's results).

All are disk galaxies.

Olguín-Iglesias et al. (2017): SB0 (NOT, J, 0.75"; K, 0.63" seeing) D'Ammando et al. (2017): E (GranTeCan, J, 0.9" seeing)

J2007-4434 (z=0.24): Kotilainen et al. (2016): pseudobulge+bar (VLT)

J2021-2235 (ULIRG, z=0.185): Berton et al. (2018): ongoing interacting systems (Magellan)

The host galaxy does not affect the relativistic jet generation!

"As the continuum emission is proposed to originate in the central 10 pc, I don't think the nature of the surrounding object is particularly relevant to the model." [Roger Blandford, 1978]

This does not exclude some mutual feedback between the jet and the host.

Jetted Narrow-Line Seyfert 1 Galaxies

Search for the parent population of Jetted NLS1s

Luminosity Functions (Berton et al. 2016, PhD thesis)

Search for the parent population of Jetted NLS1s

Best & Heckman (2012): 7302 radio-loud AGN (SDSS+NVSS+FIRST) $0.01 \le z \le 0.3$, HERG/LERG

"HERGs are typically of lower stellar mass, with lower black hole masses, bluer colours, lower concentration indices and less pronounced 4000Å breaks indicating younger stellar populations..."

Strong Disk & Emission Lines Photon-rich environment Efficient Cooling High Jet Power (Ghisellini et al. 1998)

Strong Disk & Emission Lines Photon-rich environment Efficient Cooling High Jet Power (Ghisellini et al. 1998)

Weak Disk & Emission Lines Photon-starving environment Inefficient Cooling Low Jet Power (Ghisellini et al. 1998)

Blazar Sequence

Foschini et al. (2015)

Strong Disk & Emission Lines Photon-rich environment Efficient Cooling Low Jet Power ?

Strong Disk & Emission Lines Photon-rich environment Efficient Cooling High Jet Power (Ghisellini et al. 1998)

Weak Disk & Emission Lines Photon-starving environment Inefficient Cooling Low Jet Power (Ghisellini et al. 1998)

Foschini et al. (2015)

Blazar Sequence

Jetted NLS1s do have small BH mass 🖙 Scaling Jet Power (Heinz & Sunyaev 2003) 🖙 OK

Unification of Relativistic Jets (Foschini 2011-2014)

Unification of Relativistic Jets (Foschini 2011-2014)

X-Ray Binaries

(Neutron Stars, Stellar-Mass Black Holes)

Coriat et al. (2011)

Active Galactic Nuclei

(FSRQ, BL Lac Objects, Jetted NLS1)

Jet Scaling Theory: Heinz & Sunyaev (2003)

General Relativity: mass = geometry

Table 1. The dependence of *B* and *C* on *M* and *m*, and the scaling indices ξ_M and ξ_m for different accretion modes (rows 1–3), and for the Ansatz that the mechanical jet luminosity W_{jet} should be proportional to the disc power L_{disc} (row 4), assuming p = 2.

	Injection mode	$B^2 \propto C$	ξM	$\xi_{\dot{m}}$
1	ADAF	ṁ/M	$17/12 - \alpha/3$	$17/12 + 2\alpha/3$
2	rad. press. disc	M^{-1}	$17/12 - \alpha/3$	0
3	gas press. disc	$\dot{m}^{4/5}M^{-9/10}$	$(187 - 32\alpha)/120$	$(17/12 + 2\alpha/3)4/5$
4	$W_{\rm jet} \propto L_{\rm disc}$	\dot{m}/M	$17/12 - \alpha/3$	$17/12 + 2\alpha/3$

Self-similarity

$$L_{\rm BZ} ({\rm erg \ s^{-1}}) = \begin{cases} 2.10^{44} M_8 (J/J_{\rm max})^2 & \text{Radiation Pressure Dominated (disk)} \\ 8.10^{42} M_8^{11/10} \dot{m}_{-4}^{4/5} (J/J_{\rm max})^2 & \text{Gas Pressure Dominated (disk)} \end{cases}$$

Moderski & Sikora (1996); Gosh & Abramowicz (1997)

Foschini (2011)

Unification of Relativistic Jets (Foschini 2011-2014)

Measurement errors are about one order of magnitude. The remaining dispersion likely to be due to the lack of knowledge about the **spin** (Heinz & Sunyaev 2003; Mościbrodzka et al. 2016).

Mario Livio's Conjecture (1997):

"[...] I will make the assumption that the jet <u>formation</u> mechanism, namely, the mechanism for acceleration and collimation, <u>is the same</u> <u>in all of the different classes of objects which exhibit jets</u>. [...] It should be noted right away that the <u>emission mechanism</u> which render jets visible in the different classes of objects, are very different in objects like, for example, YSOs and AGN."

Confirmed! At least for AGN and XRBs

Log Disc Luminosity

Log Disc Luminosity

Log Disc Luminosity

Log Disc Luminosity

Log Disc Luminosity

Log Jet Luminosity

Log Disc Luminosity

Log Disc Luminosity

To update the Unified Scheme for Jetted AGN...

Jetted AGN	Strong Emission Lines	Weak/No Emission Lines
Beamed (blazar?)	FSRQ + NLS1	BL Lac Obj
Unbeamed (radio galaxy?)	HERG + CSS	LERG

However...

- Blazar and Radio Galaxy are terms today associated to a certain type of cosmic sources: high black hole mass, elliptical host galaxy, ...
- Risk to lose important information/differences by simply adding NLS1s and CSS to the scheme under the blazar and radio galaxy labels (different black hole mass, different host,...);
- Not a negligible detail: remind **biases** in previous works caused by selecting only bright sources:
 - threshold mass in jet generation (\rightarrow no unification with XRB jets)
 - blazar sequence (partially revised to include also small-mass quasar, although considered only as "pollution"; Ghisellini & Tavecchio 2008; Ghisellini et al. 2017)
- Martin Gaskell (2012): "When you attach different classifications to things, it is all too easy to get convinced that they <u>are</u> different things". On the opposite, if you attach the same name to different things, it is all too easy to get convinced that they are the same thing.

The Physical Unified Scheme for Jetted AGN

Let's keep observational differences, but unify the sources by means of a physical scheme.

Jetted AGN	Efficient Cooling	Inefficient Cooling
High Mass	HMEC (FSRQ, HERG)	HMIC (BL Lac obj, LERG)
Low Mass	LMEC (NLS1, CSS)	LMIC?

(Foschini, L., 2017, What we talk about when we talk about blazars?, *Frontiers in Astronomy and Space Science*, **4**, id. 6)

The Physical Unified Scheme for Jetted AGN

Let's keep observational differences, but unify the sources by means of a physical scheme.

Jetted AGN	Efficient Cooling	Inefficient Cooling
High Mass	HMEC (FSRQ, HERG)	HMIC (BL Lac obj, LERG)
Low Mass	LMEC (NLS1, CSS)	LMIC?
$\rightarrow M \sim 10^8 M_{\odot}$		

(Foschini, L., 2017, What we talk about when we talk about blazars?, *Frontiers in Astronomy and Space Science*, **4**, id. 6)

The Physical Unified Scheme for Jetted AGN

Let's keep observational differences, but unify the sources by means of a physical scheme.

Jetted AGN	Efficient Cooling	Inefficient Cooling	
High Mass	HMEC (FSRQ, HERG)	HMIC (BL Lac obj, LERG)	
Low Mass	LMEC (NLS1, CSS)	LMIC?	
 • $M \sim 10^8 M_{\odot}$	L_{disk}/L_{Edd} ~	0.01-0.001	

[equivalent to Excitation Index~1; cf Best & Heckman (2012)]

(Foschini, L., 2017, What we talk about when we talk about blazars?, *Frontiers in Astronomy and Space Science*, **4**, id. 6)