

Hunting for extreme blazars in the TeV band

Luca Foffano, Elisa Prandini, Simona Paiano, Cornelia Arcaro On behalf of the MAGIC collaboration

and Alberto Franceschini

AGN13, Milano October 9th, 2018

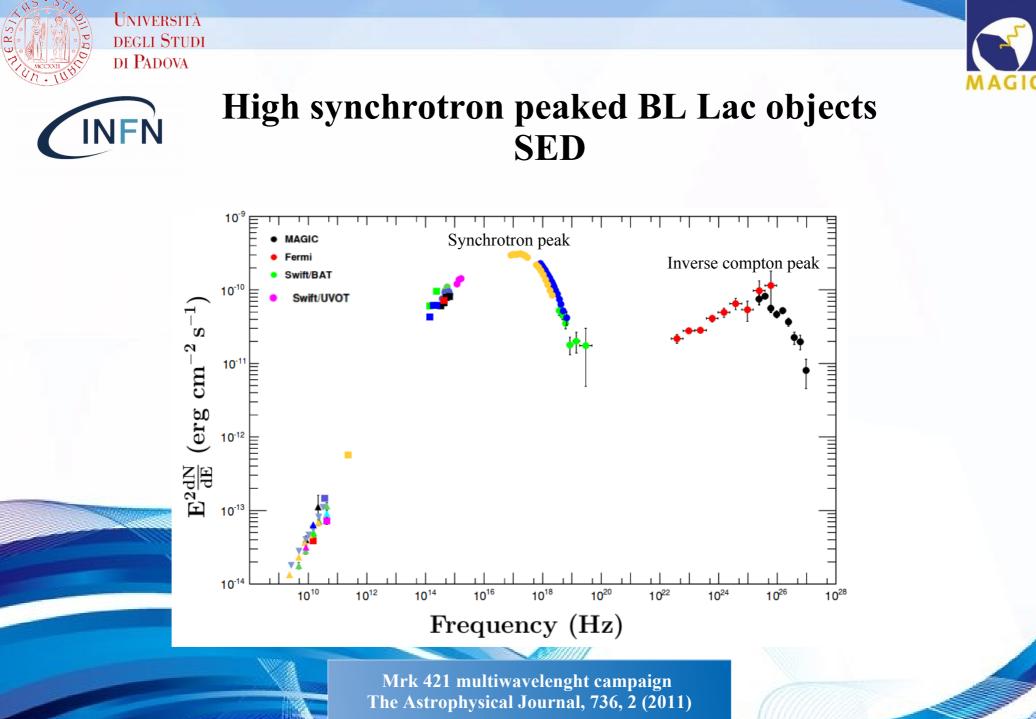
Luca Foffano University and INFN of Padova

Università

NFN

Overview

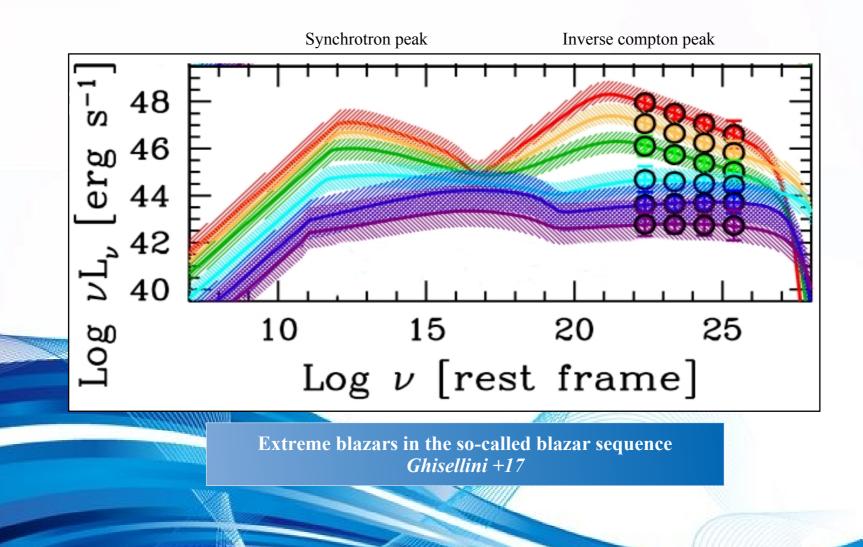
- \geq Blazars and extreme blazars
- Extreme blazars hunting program in MAGIC \succ
- Looking for new TeV extreme blazars candidates \succ
- PGC 2402248: a new TeV extreme blazar detected by the MAGIC telescopes \succ



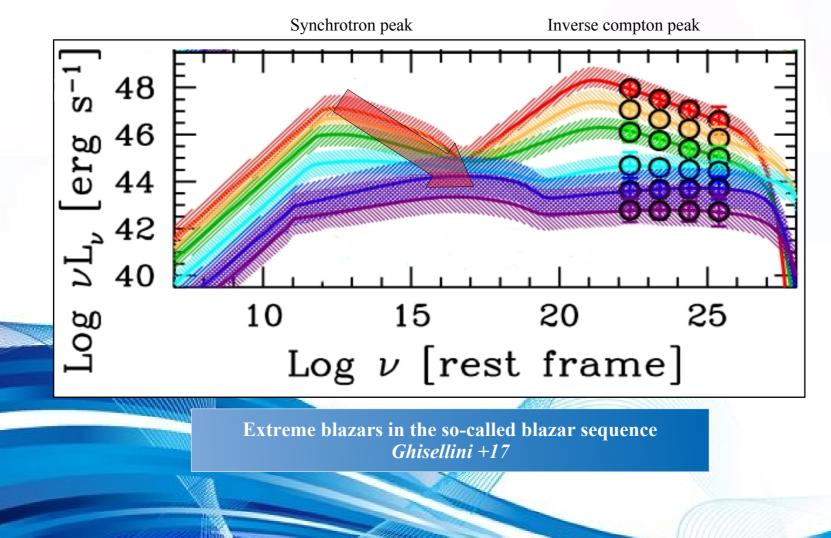
Blazars and extreme blazars

Luca Foffano University and INFN of Padova

9/10/18

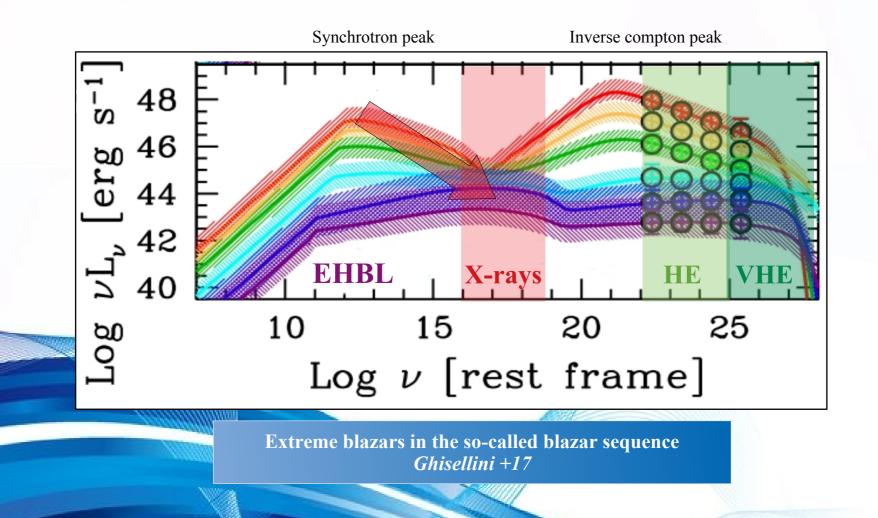

Luca Foffano University and INFN of Padova

Blazars and extreme blazars

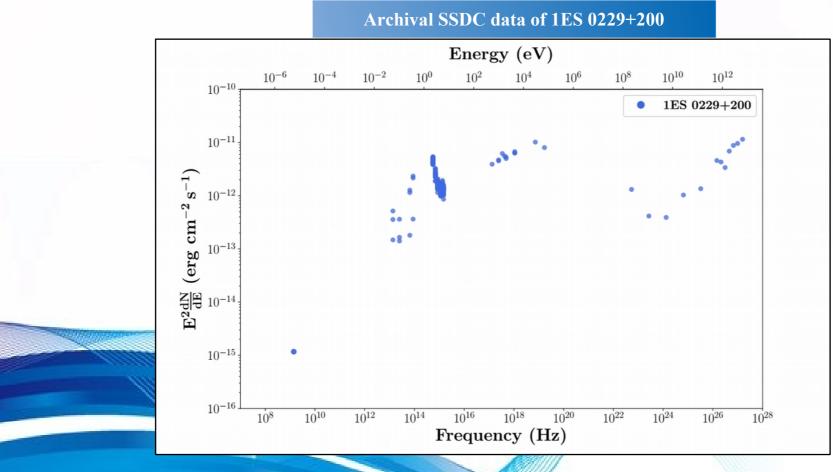

Luca Foffano University and INFN of Padova

9/10/18

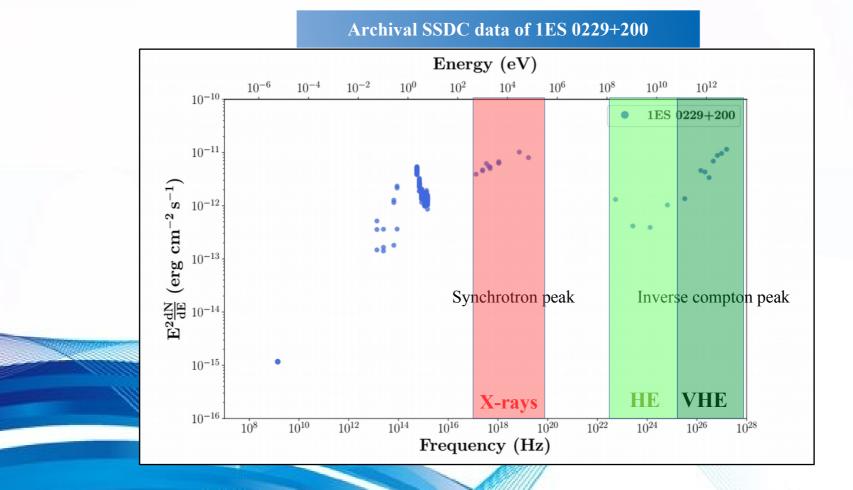
Blazars and extreme blazars


Luca Foffano University and INFN of Padova

Blazars and extreme blazars


Luca Foffano University and INFN of Padova

Extreme blazars

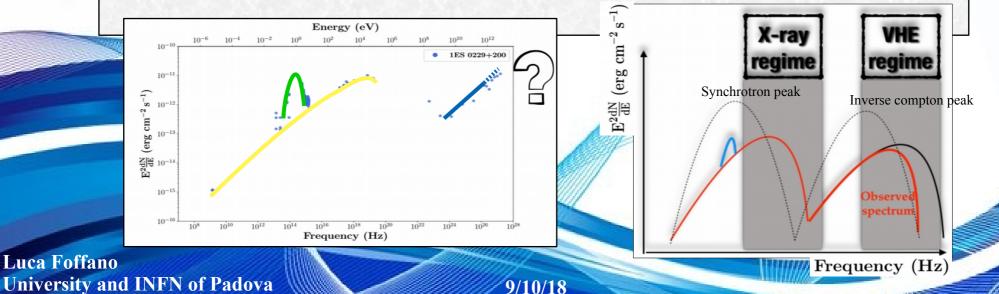

We are looking for the most extreme blazars in the VHE gamma-ray band

Luca Foffano University and INFN of Padova

Extreme blazars

We are looking for the most extreme blazars in the VHE gamma-ray band

Luca Foffano University and INFN of Padova


Università degli Studi di Padova

10

Extreme blazars

- High synchrotron peak frequency $> 10^{17}$ Hz: hard X-rays
- High **"inverse compton" peak** frequency > 10²⁶ Hz: VHE
- Hard spectrum in X-rays and gamma-rays (important for cosmology wrt EBL, extragalactic studies IGMF, and neutrinos)
- Relatively low luminosity with respect to other blazars
- Potentially absorbed in the VHE due to interaction with optical-infrared diffuse background (EBL)
- **Galaxy** should be **detectable** in the optical range
- Not well detected in the HE gamma-ray band (Fermi-LAT)

Università degli Studi di Padova

Extreme blazars

- Synchrotron Self-Compton (SSC) model (only leptonic) works but with extreme parameters
 - \rightarrow extremely low magnetization in the emission zone, very high doppler factor or minimum Lorentz factor (e.g. see Tavecchio+09 and Cerruti+15)
- Lepto-hadronic emission models are favoured, but with a lot of free parameters...
- Should photo-hadronic processes be preferred?
- HBL are good candidates for neutrino emission (e.g. see Padovani+16 and Resconi+17)
 → what about EHBLs? Could EHBLs be neutrino sources?
- Only few sources are known TeV EHBLs...

1ES 0229+200, 1ES 0347-121, RGB J0710+591, 1ES 1101-232

We need more sources!

Luca Foffano University and INFN of Padova

Extreme blazars with the MAGIC telescopes

Luca Foffano University and INFN of Padova

Universită degli Studi di Padova

13

University and INFN of Padova

Extreme blazars with MAGIC

9/10/18

Paper in preparation

	Source	Z	Log V _{sync,peak}
	TXS 0210+515	0.049	17.3
	BZB J0809+3455	0.083	16.6
	RBS 0723	0.198	17.8
	1ES 0927+500	0.187	17.5
	RBS 0921	0.236	17.9
	1ES 1426+428	0.129	18.1
	1ES 2037+521	0.053	n.a.
	RGB J2042+244	0.104	17.5
	RGB J2313+147	0.163	17.7
	1ES 0229+200	0.140	18.5
Luca F	offano		And and a second se

- Nine new targets
- Extreme synchrotron peak (from 2WHSP Catalog)
- **Low redshift**: 0.049 < z < 0.236
- More than 200 hours of data
- All the targets are **TeV undetected** (except for 1ES 1426+428) (Aharonian, F. et al.) (HEGRA Collaboration 2003, A&A, 403, 523)
- 1ES 0229+200 considered here for comparison
- Now performing **SED modelling** of these sources

4 detections + 1 hint

UNIVERSITÀ **DEGLI STUDI** di Padova

Extreme blazars with MAGIC

Paper in preparation

	Source	Z	Log V _{sync,peak}	$z^{s}_{a} = 160 \begin{bmatrix} TXS 0210+515 \\ 140 \end{bmatrix} TXS 0210+515 \\ Preliminary \\ N_{ex} = 91.8 \pm 16.8 \\ Significance (Li&Ma) = 5.95\sigma \end{bmatrix}$
	TXS 0210+515	0.049	17.3	
	BZB J0809+3455	0.083	16.6	
	RBS 0723	0.198	17.8	
	1ES 0927+500	0.187	17.5	
	RBS 0921	0.236	17.9	θ^{2} [deg ²]
	1ES 1426+428	0.129	18.1	≝ 350
	1ES 2037+521	0.053	n.a.	350 RBS 0723 Time = 45.31 h 300 Preliminary Non = 500; Non = 378.2 ± 8.7 Nex = 121.8 Significance (Li&Ma) = 5.40σ
	RGB J2042+244	0.104	17.5	
	RGB J2313+147	0.163	17.7	
	1ES 0229+200	0.140	18.5	
Luca Fo Univers	offano sity and INFN of Padova		9/10/18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Universită degli Studi di Padova

15

Extreme blazars with MAGIC

Paper in preparation

	Source	Z	Log V _{sync,peak}	2 60 50 50 50 50 50 50 50 50 50 50 50 50 50 5
	TXS 0210+515	0.049	17.3	40
	BZB J0809+3455	0.083	16.6	
	RBS 0723	0.198	17.8	
	1ES 0927+500	0.187	17.5	0 0.1 0.2 0.3 0.4
	RBS 0921	0.236	17.9	θ ² [deg ²] ∞ 240
	1ES 1426+428	0.129	18.1	$\begin{array}{c} 5 \\ 220 \\ 200 \\ 2$
	1ES 2037+521	0.053	n.a.	180 Significance (Li&Ma) = 7.49σ
	RGB J2042+244	0.104	17.5	
	RGB J2313+147	0.163	17.7	
	1ES 0229+200	0.140	18.5	$\begin{array}{c} 20 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
Luca Fo Univers	offano aity and INFN of Padova		9/10/18	

Università degli Studi di Padova

Extreme blazars with MAGIC

Paper in preparation

	Source	Z	Log V _{sync,peak}	$\sum_{n=1}^{100} 250 \begin{bmatrix} RGB J2042+244 \\ Preliminary \end{bmatrix} $ Time = 52.51 h Non = 404; Noff = 322.6 ± 10.4 Nex = 81.4 ± 22.6 Significance (Li&Ma) = 3.74\sigma
	TXS 0210+515	0.049	17.3	
	BZB J0809+3455	0.083	16.6	
	RBS 0723	0.198	17.8	
	1ES 0927+500	0.187	17.5	
	RBS 0921	0.236	17.9	$\theta^{0} 0 0.1 0.2 0.3 0.4 \theta^{2} [deg^{2}]$
	1ES 1426+428	0.129	18.1	= 117.46 h Non = 117.46 h Non = 1182; N _{eff} = 857.0 ± 16.8
	1ES 2037+521	0.053	n.a.	Z 700 IES 0229+200 Non = 1182; Noff = 857.0 ± 16.8 Preliminary Nex = 325.0 Significance (Li&Ma) = 8.96σ
	RGB J2042+244	0.104	17.5	
	RGB J2313+147	0.163	17.7	
	1ES 0229+200	0.140	18.5	200
Luca Fo Univers	offano aity and INFN of Padova		9/10/18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Università degli Studi di Padova

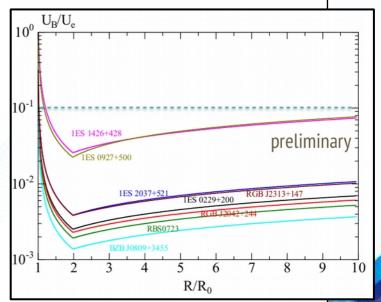
Extreme blazars with MAGIC

Paper in preparation

SED modelling

(following Asano+14)

SED modelling performed on the four new detections:


- Steady outflow
- Electron injection during the dynamical scale

Some considerations:

- SSC emission efficiency is low
- Relatively high electron energy density
- Lower magnetization compared to other usual blazars
- Synchrotron and IC peaks are generally not well constrained
- Precise TeV and X-ray data are crucial

Main physical processes considered:

- Electron injection
- Synchrotron emission and cooling
- Inverse Compton emission and cooling
- Adiabatic cooling
- Photon escape
- No electron escape!

Luca Foffano University and INFN of Padova

Looking for new TeV extreme blazars

L. Foffano, E. Prandini, A. Franceschini, S. Paiano

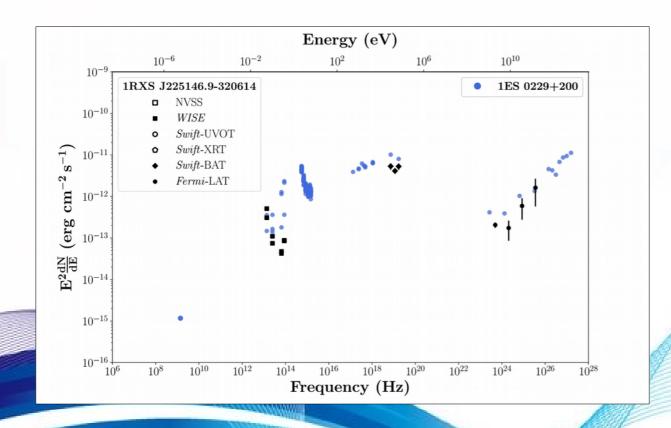
Luca Foffano University and INFN of Padova

Looking for new TeV EHBL candidates

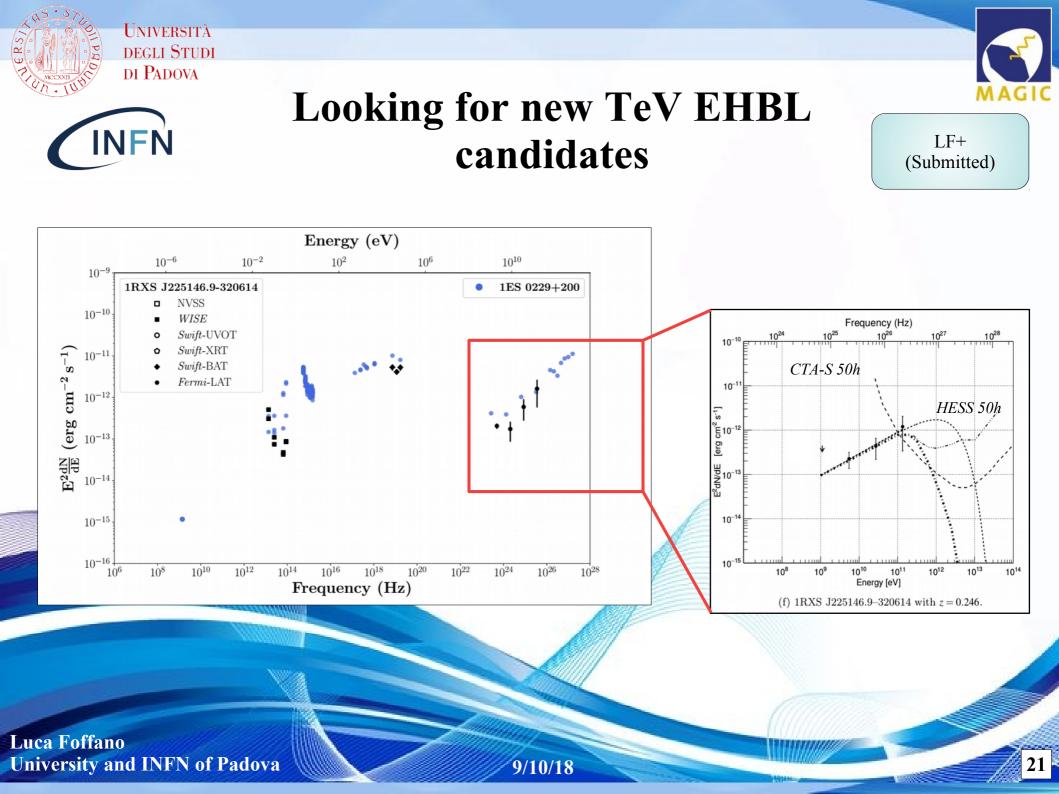
We used the Swift-BAT 105-months hard X-ray catalogue

- Selecting blazars with good detection in the hard X-ray band
- Checking the synchrotron peak location above 10¹⁷ Hz (taking care of misclassifications and errors in peak estimations in the catalogues)
- Performing a new *Fermi*-LAT analysis over 10 years of data to verify the detection in the HE gamma-ray band
- Extrapolating the spectrum up to the **TeV gamma-ray** band to check detectability by Cherenkov telescopes
- Studying the final sample of 34 candidates, and looking for relations between already TeV detected and TeV undetected sources

Luca Foffano University and INFN of Padova



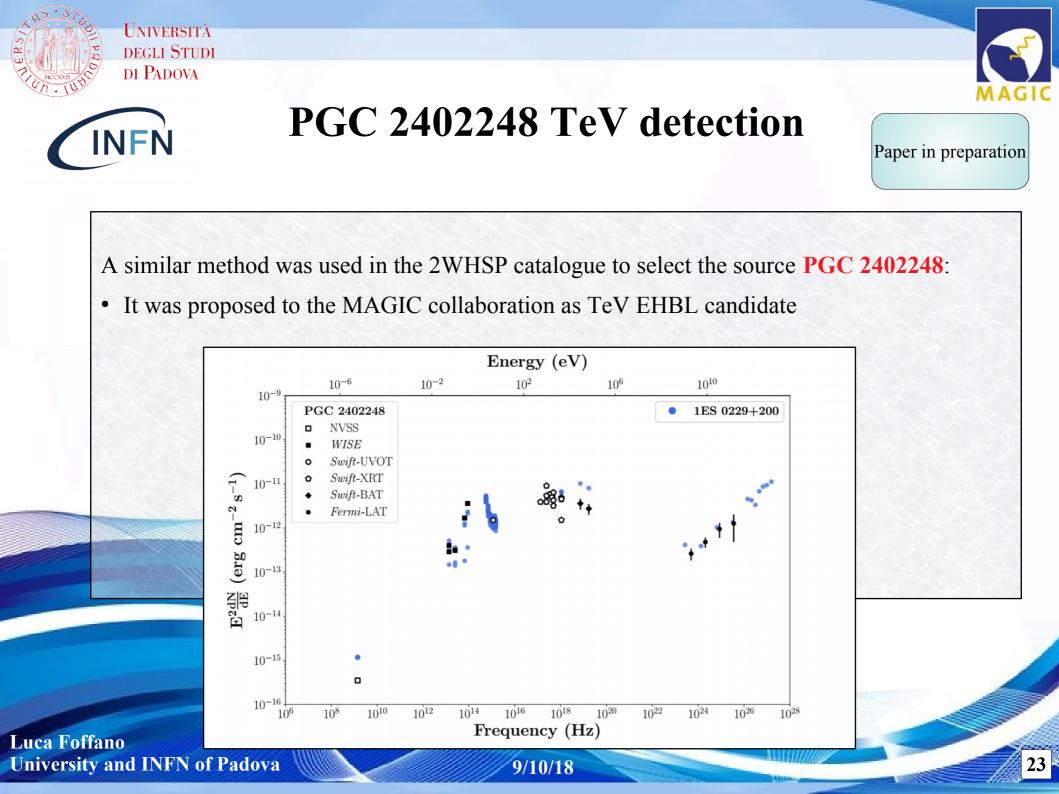
e R Università degli Studi


DI PADOVA

Looking for new TeV EHBL candidates

LF+ (Submitted)

Luca Foffano University and INFN of Padova



PGC 2402248 TeV detection with the MAGIC telescopes

Luca Foffano University and INFN of Padova

PGC 2402248 TeV detection

Paper in preparation

A similar method was used in the 2WHSP catalogue to select the source PGC 2402248:

- It was proposed to the MAGIC collaboration as TeV EHBL candidate
- It was accepted as first source to be observed
- It was **successfully** detected by MAGIC after 23 h

First detection of very-high-energy gamma-ray emission from the extreme blazar PGC 2402248 with the MAGIC telescopes

ATel #11548; Razmik Mirzoyan (Max-Planck-Institute for Physics, Munich), on behalf of the MAGIC collaboration on 19 Apr 2018; 15:30 UT Credential Certification: Razmik Mirzoyan (Razmik.Mirzoyan@mpp.mpg.de)

Luca Foffano University and INFN of Padova

Conclusions

Luca Foffano University and INFN of Padova

9/10/18

Take home message

- Extreme blazars could be a new category of blazars with extreme spectral parameters
- We need more TeV gamma-ray detected EHBLs
- The MAGIC collaboration detected **5 new TeV EHBLs** + **1 hint**
- We are extracting **new TeV EHBL candidates** studying their proprierties in the **hard X-ray** and **HE gamma-ray** bands

 \rightarrow This method was successful in detecting PGC 2402248 in the VHE gamma-ray band by the MAGIC telescopes

• This work will continue with other catalogues

Luca Foffano University and INFN of Padova

tre/Mel9

22-25 January 2019 Padova

Topics:

- The blazar family
- Mechanisms of particle acceleration and radiation in jets
- Extreme blazars as neutrino factories •
- Extreme blazars and the connection with the highest energy cosmic rays.
- Cosmology and fundamental physics
- Future observatories

Scientific Organising Committee

Chairs: Jonathan Biteau (IPNO) & Elisa Prandini (UniPD) Anna Francowiak (DESY) Kumiko Kotera (IAP) Matt Lister (Purdue U.) Paolo Padovani (ESO) Maria Petropolou (Princeton U. Fabrizio Tavecchio (INAF

> Dipartimento di Fisica

e Astronomia Galileo Galile

4

Local Organising Committee

Chair: Luca Foffano (UniPD) Cornelia Arcaro (INAF) Michele Doro (UniPD) Manuela Mallamaci (INFN) Simona Paiano (INAF) Elisa Prandini (UniPD) Alessia Spolon (UniPD) Secretary:

Adriana Schiavon (UniPD)

INFN

email extreme19@dfa.unipd.it

web https://agenda.infn.it/ event/eXtreme19

Abstract welcome by October 31st

