AGN feedback in the form of powerful outflows: an observational perspective

Marcella Brusa

1) DIFA-Dipartimento di Fisica e Astronomia / Università di Bologna 2) OAS-Osservatorio di Astrofisica e Scienza dello Spazio di Bologna / INAF

(1) Introduction: short guide on AGN and AGN/galaxies co-evolution ("feedback")

(2) Outflows/winds probes and Multiphase Nature

(3) Incidence of AGN outflows

(4) Energetics and power

(5) Main open question What's the impact of outflows on the host galaxy?

(1) Introduction: short guide on AGN and AGN/galaxies co-evolution ("feedback") Alessandro Marconi, Andrea Merloni talks

(2) Outflows/winds probes and Multiphase Nature

- (3) Incidence of AGN outflows
- (4) Energetics and power
- (5) Main open question What's the impact of outflows on the host galaxy?

Roberto Maiolino talk

(1) Introduction: short guide on AGN and AGN/galaxies co-evolution ("feedback")

(2) Outflows/winds probes and Multiphase Nature

- (3) Incidence of AGN outflows
- (4) Energetics and power
- (5) Main open question What's the impact of outflows on the host galaxy?

AGN FEEDBACK MODES

Expectations:

The activity of the SMBH influences the life of the galaxy

MICRO vs. MACRO

Heating vs. Ejecting

e.g. Croton+2006, Ciotti&Ostriker2007

Radiative vs. Kinetic

e.g. King2012, Tadhunter+2014

AGN FEEDBACK MODES

Heating vs. <mark>Ejecting</mark>

e.g. Croton+2006, Ciotti&Ostriker2007

Radiative vs. Kinetic

e.g. Ciotti+2010, Tadhunter+2014

see Roberto Maiolino & other talks

INAF 🦲

Expectations:

The activity of the SMBH influences the life of the galaxy

MICRO vs. MACRO

Marcella Brusa, Milano, 11 October 2018

AGN FEEDBACK AS OUTFLOWS

Cicone, MB et al. 2018 ("Comment" in Nature Astronomy)

Expectations:

Winds from the central AGN propagate into the host galaxy

Wide-angle, wind-driven outflows, launched from the accretion disk and driven by

radiation pressure

Faucher-Giguere+2012, King2012, Fabian2012 Zubovas&King 2012...2016, Costa+2014

AGN FEEDBACK AS OUTFLOWS

Cicone, MB et al. 2018 ("Comment" in Nature Astronomy)

d Neutral molecular/atomic Llighty ionized gas (X-ray) Ionized (optical) (mm/radio) PDS456 Mrk 231 MAGNUM SURVEY NGC1363 1.5 CO(1 <u>F</u> Mg 5⁻¹ cm (ref. 17) -1.0 🖀 ¥ 15-600 Velocity (km s⁻¹) Linergy (keV) ionised

highly-ionised gas (UFOs)

Nardini+2015

b

neutral gas molecular and atomic Morganti+2016, Cicone+2012

TITUTO NAZIONALE DI ASTROFISICA

Expectations:

Winds from the central AGN propagate into the host galaxy

Wide-angle, wind-driven outflows, launched from the accretion disk and driven by

radiation pressure

Faucher-Giguere+2012, King2012, Fabian2012 Zubovas&King 2012...2016, Costa+2014

Observations:

Winds are seen across the electromagnetic spectrum (ionization state, redshift...)

Different tracers probe different phases *and* different scales

e.g. How can we identify the presence of gas flows in our observations?

Gas flows, winds = velocity "disturbed" kinematics

Δ**v**, **FWHM**, v₈₀, v_{max}, **EW**...

ONE-D (slit spectroscopy):

- asymmetries in absorption and emission lines (otherwise: symmetric)
- broad/deep spectral features (otherwise: narrow/less deep)

3D (IFU spectroscopy)

- velocities fields with significant blue/red components (otherwise symmetric/ consistent with rotation) z~6 QSO

WINDS ARE MULTI-PHASE & MULTI-SCALE

OH

On single objects see also:

low-z

Sturm+201 Longinotti+2018 (IRAS17020) Greene+2012/Sun+2014 (SDSS1356) Tombesi+2015 (IRASF1119) Feruglio+2013 (NGC6240) Tadhunter+2015 (IC 5063) Rupke+2013/Perna+2018 (Mrk848)

Circinus, NGC1266, NGC1068, PDS456...

see Enrico Piconcelli talk

INAR

0.03

0.02

0.01

0

-1000

-500

رل ا

Flux

CO(2-1)

0

Velocity [Km/s]

500

1000

PdBI

mm

WINDS ARE MULTI-PHASE & MULTI-SCALE

On single objects see also:

<u>high-z</u> Herrera-Camus+2018 (zC400528) Vayner+2017 (3C298) Cano-Diaz+2012/Carniani+2017 (2QZ J0028) Chartas+2003/Feruglio+2017 (APM0279)

see Stefano Carniani talk

XID2028 z=1.592

Brusa+2015 X-shooter Perna+2015 X-shooter+DEIMOS Cresci+2015 SINFONI+HST Brusa+2018 ALMA+LUCI

Ionised outflow ([OIII])

molecular and ionised winds

neutral outflow ([MgII])

(1) Introduction: short guide on AGN and AGN/galaxies co-evolution ("feedback")

(2) Outflows/winds probes and Multiphase Nature

(3) Incidence of AGN outflows

(4) Energetics and power

(5) Main open question What's the impact of outflows on the host galaxy?

AGN OUTFLOWS "INCIDENCE" IN REFEREED PAPERS

Harrison et al. 2018, (Perspective article, in Nature Astronomy March 1 2018 special issue on AGN feedback)

It has become "popular" to attempt to derive outflow properties observationally in order to test feedback models

AGN OUTFLOWS "INCIDENCE" IN REFEREED PAPERS

ADS SEARCH for "Quasar & feedback" or "AGN & outflows", years 2015-2018

Sijacki+2015 The Illustris simulation: the evolving population of black holes across cosmic time King&Pounds 2015 Powerful Outflows and Feedback from Active Galactic Nuclei Tombesi+2015 Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy Khandai+2015 The MassiveBlack-II simulation: the evolution of haloes and galaxies to $z \sim 0$ Rosas-Guevara+2015 The impact of angular momentum on black hole accretion rates in simulations of galaxy formation Schawinski+2015 Active galactic nuclei flicker: an observational estimate of the duration of black hole growth phases of ~10⁵ yr **Feruglio+2015** The multi-phase winds of Markarian 231: from the nuclear, ultra-fast wind to the galaxy-scale, molecular outflow Faucher-Giguere+2015 Neutral hydrogen in galaxy haloes at the peak of the cosmic star formation history **Brusa+2015** X-shooter reveals powerful outflows in $z \sim 1.5$ X-ray selected obscured quasi-stellar objects Rahmati+2015 The distribution of neutral hydrogen around high-redshift galaxies and quasars in the EAGLE simulation Volonteri+2015 The Case for Supercritical Accretion onto Massive Black Holes at High Redshift Nardini+2015 Black hole feedback in the luminous quasar PDS 456 Weinberger+2017 Simulating galaxy formation with black hole driven thermal and kinetic feedback Cresci+2015 Blowin' in the Wind: Both "Negative" and "Positive" Feedback in an Obscured High-z Quasar Yuan+2015 Numerical Simulation of Hot Accretion Flows. III. Revisiting Wind Properties Using the Trajectory Approach **Carniani+2015** Ionised outflows in $z \sim 2.4$ quasar host galaxies Croton+2016 Semi-Analytic Galaxy Evolution (SAGE): Model Calibration and Basic Results Alatalo+2015 Suppression of Star Formation in NGC 1266 **Fiore+2017** AGN wind scaling relations and the co-evolution of black holes and galaxies Thompson+2015 Dynamics of dusty radiation-pressure-driven shells and clouds: fast outflows from galaxies,.... and AGN

It has become "popular" to attempt to derive outflow properties observationally in order to test feedback models

HIGH INCIDENCE OF IONISED OUTFLOWS

Outflows are common

SDSS + stacked results: "ubiquituous" in the *ionised* components

Outflows "incidence*" increases with Luminosity and/or Eddington ratio

*based on fraction of sources with v>threshold or # of gaussians needed to fit the profile from 20% to 100% !

Mullaney +2013 (SDSS, lowz, [OIII])

IONISED OUTFLOWS INCIDENCE VS. LUMINOSITY

Similar results in different samples - SDSS + Optical/radio/X-ray selected

Mullaney+2013, Bae&Woo2014, Zakamska&Greene2014, Balmaverde+2016 + Harrison+2016 (KMOS+SINFONI,z>1)

Perna+2017a (Xray/SDSS sample, z<0.8)

IONISED OUTFLOWS INCIDENCE VS. LUMINOSITY

Similar results in different samples - SDSS + Optical/radio/X-ray selected

Mullaney+2013, Bae&Woo2014, Zakamska&Greene2014, Balmaverde+2016 + Harrison+2016 (KMOS+SINFONI,z>1)

CRUCIAL ROLE OF DUST/OBSCURATION

Ionised AGN outflows more common in highL/highEddratio and in red/obs/dusty sources

(in agreement with models; e.g. Hopkins+2008)

75% in X-ray selected, Obscured, Red sources

(e.g. Brusa et al. 2015, Perna et al, 2015a,b (see also Brusa et al. 2016, Kakkad et al. 2016, Zakamska+2016, LaMassa+2017, Toba+2017 etc.)

Fraction of ionised outflows in

30% in luminous IR selected samples:

(e.g. Bischetti et al. 2017)

Consistent with model predictions which take into account radiation pressure on dust (e.g. Costa+2018)

Importance of highly obscured environment to launch outflows

Marcella Brusa, Milano, 11 October 2018

STITUTO NAZIONALE DI ASTROFISICA

IONISED OUTFLOWS VS. HOST GALAXY (SFR,M*)

Low-z (SDSS) ionised outflows present at high stellar mass and high SFR (only in AGN samples..)

<u>High-z (KMOS)</u> ionised outflows present at high stellar mass and all SFR (dominated by AGN)

LOW INCIDENCE OF NEUTRAL OUTFLOWS (?)

Outflows are not common in the *neutral* component at low-z <1-few% NaD detections in AGN samples / **Perna+2017a**, Sarzi+2016, Nedelchev+2017

Diagnostic to select neutral outflows (NaD) **Concomitant ionised and neutral** outflows only in sources with SB+AGN nature / mergers ?

see Alice Concas talk

LOW INCIDENCE OF NEUTRAL OUTFLOWS (?)

Outflows are not common in the *neutral* component at low-z <1-few% NaD detections in AGN samples / **Perna+2017a**, Sarzi+2016, Nedelchev+2017

Diagnostic to select neutral outflows (NaD) **Concomitant ionised and neutral** outflows only in sources with SB+AGN nature / mergers ?

see Alice Concas talk

(1) Introduction: short guide on AGN and AGN/galaxies co-evolution ("feedback")

(2) Outflows/winds probes and Multiphase Nature

(3) Incidence of AGN outflows

(4) Energetics and power

(5) Main open question What's the impact of outflows on the host galaxy?

NO "ENERGY PROBLEM"

• <u>Quasar</u>: $E_{AGN} \sim 10^{61}$ ($\epsilon/0.10$) ($M_{BH}/10^8 M_{sun}$) ergs >> $M_{gal} \sigma^2$

few % of Lbol coupled to ISM enough to unbound gas in the galaxy

SN feedback models require 100% efficiency or more...

ESTIMATING OUTFLOW PROPERTIES

outflow mass rate: $M_{out} \propto M_{out} V_{out}/R$

kinetic power:

 $\dot{E}_{out} \propto \dot{M}_{out} V_{out}^2$

momentum flux:

 $\dot{P}_{out} \propto M_{out} V_{out}$

Molecular gas mass

Ionised gas mass [OIII],Hβ, Hα flux/luminosity

(mainly) CO(1-0) outflow flux/luminosity

+excitation ratio (factor of 2-10!)

+alpha_CO (range 0.13-4, a factor of 30!)

+....

(+ionization correction)
 +metallicity
 +density, temperature
 +extinction

+ Geometry

+
radius, (uniform) density, filling factor, clumpy etc.
+ Time

Radius/velocity

ESTIMATING MASS OUTFLOW RATES

Ionised gas mass

$$\dot{M}_{ion}^{out} = 164 \ \frac{L_{44}([OIII]) v_3}{n_{e3} \ 10^{[O/H]} R_{kpc}} \ M_{\odot} \ yr^{-1}$$

for details see Appendix B in Cano-Diaz+2012

assumptions: all Oxygen is in O²⁺ T=10000 K (factor ~2) (bi)conical geometry uniform density (factor 3)

observational uncertainties: Radius velocity, density, extinction, metallicity

ESTIMATING MASS OUTFLOW RATES

observational uncertainties:

Radius —> need spatially resolved data (otherwise lower limits on energetics) **velocity** —> need spatially resolved data, disk subtraction, definition dependent **density** (T dep) —> **converging around 1000 cm**-³ (**Perna+2017b**, Förster-Schreiber+18) **extinction** —> need good spectral coverage **metallicity** —> need good metallicity tracers

THE ERA OF SPATIALLY RESOLVED SPECTROSCOPY

see Giacomo Venturi talk

vel [km/s]

75

150

MUSE + ALMA + SINFONI/AO + MaNGA, CALIFA + waiting for JWST

km/s

MUSE observations of NGC1365 (MAGNUM sample; Venturi+2018)

BA [d m s] Mass Outflow Rates

10 ሏδ [arcsecs] -20 30 20 1010 20 30 ∆RA[arcsecs] **Spatially resolved** mass outflow rates Revalski+2018

[OIII] velocity - Stellar velocity

SINFONI/AO observations z~1.5 QSO (Brusa+2016)

SUPER project (PI: Mainieri) Circosta+2018

MEASURED OUTFLOW PROPERTIES VS. LUMINOSITY

Kinetic power

Mass outflow rate

Carniani et al. 2015

---> "fiducial" outflow kinetic power consistent with predictions in feedback models (few% of Lboi,AGN)

---> all winds components correlate with Lbol AGN, with different slopes and normalisations

same trend of Lbol vs. v_{out}^5 for both UFOs and galaxy scale winds

data (statistically) consistent with predictions for energy conserving mechanisms for wind propagation (Costa+2015)

The wind bubble retains its the thermal energy

see Francesco Tombesi talk

Energy conserving mechanism is favoured, but difficult to get a definitive measurement

Energy conserving mechanism is favoured, but difficult to get a definitive measurement

Marcella Brusa, Milano, 11 October 2018

COUPLING EFFICIENCIES

Harrison et al., 2018, Nat. Astr.

M MA MATER STUDIORU

anith BEASI

TAKE HOME MESSAGES

(1) Outflows are present, both at low and high-z, in AGN
 ---> winds are multi-phase and multi-scale
 —> spatially resolved outflows studies now possible out to high-z!

(2) Three lessons learned from observations:

(Ionised) outflows particularly common in luminous and red AGN —> importance of radiation pressure on dust

Neutral outflow phase less common than ionised phase —> Short-lived phase?

Energy conserving mechanisms seem favoured

—> Feedback models seem to work (but difficult to have a definitive measurement)

But... Statistics and/or spatial/spectral resolution still limited Huge leaps expected in the next years

BACK-UP SLIDES

Marcella Brusa, Milano, 11 October 2018

RADIATIVE FEEDBACK

Wide-angle, wind-driven outflows, launched from the accretion disk and driven by **radiation pressure**

Faucher-Giguere+2012, King2012, Fabian2012 Zubovas&King 2012...2016, Costa+2014 radiation pressure from the QSO accelerates accretion disc wind at **Pdot(AGN)~L_{AGN}/c** (King2012)

momentum-conserving wind bubble predicts large scale outflows with Pdot(out)~Pdot(AGN)~L_{AGN}/C

energy-conserving wind bubble boosts the momentum by a factor Pdot(out)~20xPdot(AGN)~20xL_{AGN}/c

Are we able to observe radiatively driven outflows and disentangle between different kinds of energy transfer on the ISM?

Role of dust?

SUPER

a SINFONI Survey for Unveiling the Physics and Effects of Radiative feedback ESO Large Programme

PI: V. Mainieri

F. Fiore, A. Marconi, B. Balmaverde, A. Bongiorno, M. Brusa, S. Carniani, C. Circosta, F. Civano, A. Comastri, G. Cresci, C. Feruglio, A. Georgakakis, B. Husemann, D. Kakkad, A. Lamastra, G. Lanzuisi, Z. Liu, F. Mannucci, N. Menci, M.-L. Menzel, A. Merloni, H. Netzer, P. Padovani, M. Perna, E. Piconcelli, P. Popesso, M. Salvato, M. Schramm, A. Schulze, J. Silverman, G. Vietri, C. Vignali, G. Zamorani, L. Zappacosta

280 hrs, 2years ~40 X-ray selected AGN from COSMOS, CDFS, XXL, Stripe82X

SINFONI-AO LGS mapping of [OIII] and Ha Same strategy of XID2028

Explore outflows power and incidence as a function of AGN & host properties

SUPER

a SINFONI Survey for Unveiling the Physics and Effects of Radiative feedback ESO Large Programme

PI: V. Mainieri

F. Fiore, A. Marconi, B. Balmaverde, A. Bongiorno, M. Brusa, S. Carniani, C. Circosta, F. Civano, A. Comastri, G. Cresci, C. Feruglio, A. Georgakakis, B. Husemann, D. Kakkad, A. Lamastra, G. Lanzuisi, Z. Liu, F. Mannucci, N. Menci, M.-L. Menzel, A. Merloni, H. Netzer, P. Padovani, M. Perna, E. Piconcelli, P. Popesso, M. Salvato, M. Schramm, A. Schulze, J. Silverman, G. Vietri, C. Vignali, G. Zamorani, L. Zappacosta

280 hrs, 2years ~40 X-ray selected AGN from COSMOS, CDFS, XXL, Stripe82X

SINFONI-AO LGS mapping of [OIII] and Ha Same strategy of XID2028

Explore outflows power and incidence as a function of AGN & host properties

Rare sources

Cygnus A

Alexander & Hickox 2012

These sources are rare! Need large areas to be explored COSMOS is a very powerful resource!

XMM-COSMOS was crucial

still, out of mainstream COSMOS area(s) (no HST/ CANDELS, no Aztec/ SCUBA2/MAMBO/GMRT etc.)

huge prospects for large area M87 surveys (XXL, Stripe82 & eROSITA)

Zakamska+2016

Common features in models at high-L: "coeval" SFR and BH growth

w/o BH

with BH

V_w= 320 km/s

V_= 160 km/s

V_{-e}= 80 km/s

2.0

2.5

sulges

XID2028: Revealing the outflow (2) SINFONI J-band data (PI: V. Mainieri)

Cresci, Mainieri, MB+2015, ApJ

XID2028: Revealing the outflow (2) SINFONI J-band data (PI: V. Mainieri)

Outflow properties vs. Luminosities

Brusa et al. 2015a, MNRAS

Trend FWHM vs. Lbol Higher luminosity / larger widths Carniani et al. 2015

Mdot correlates with Lbol ionised gas ~1-10% of molecular gas (but see SDSS1356,Greene+2012, Sun+2014) --> are the outflows episodes related at all?

Outflow properties vs. Luminosities

Brusa et al. 2015a, MNRAS

Trend FWHM vs. Lbol Higher luminosity / larger widths

Carniani et al. 2015

Mdot correlates with Lbol ionised gas ~1-10% of molecular gas (but see SDSS1356,Greene+2012, Sun+2014) --> are the outflows episodes related at all?