

università degli studi FIRENZE

INAF

ISTITUTO NAZIONALE DI ASTROFISICA

NATIONAL INSTITUTE FOR ASTROPHYSICS

The relation between supermassive black holes and their host galaxies

BEAUTY and the BEAST

Alessandro Marconi

Dipartimento di Fisica e Astronomia, Università di Firenze INAF - Osservatorio Astrofisico di Arcetri

università degli studi FIRENZE

INAF

ISTITUTO NAZIONALE DI ASTROFISICA

NATIONAL INSTITUTE FOR ASTROPHYSICS

Scaling relations between supermassive black holes and their host galaxies

BEAUTY

and the

BEAST

Alessandro Marconi

Dipartimento di Fisica e Astronomia, Università di Firenze INAF - Osservatorio Astrofisico di Arcetri

When it all started

Correlations BH - host spheroid

☆ Kormendy & Richstone (1995) suggest M_{BH} vs L_{B,spher}

 \swarrow Magorrian at al. (1998) find M_{BH} and M_{spher} ("Magorrian" relation)

- Low resolution ground based data
- Most mass estimates overestimated (2-I models)

When it boomed

Ferrarese & Merritt 2000

Where we are now ...

What's new since 2000?

🙀 BH mass measurements

- How? Uncertainties? Open problems?
- Are they really BHs?

 \Leftrightarrow Which relations are real?

- Real, observational effects or biases?
- Physical meaning?
- What about the Fundamental plane of spheroids?

 \overleftrightarrow Redshift evolution and origin of these relations?

BH Mass measurements

\overleftrightarrow Proper motions of stars

- Only Milky Way Center
- ☆ Stellar kinematics
 - kinematics of stars and (complex) dynamical models
- ☆ Gas kinematics
 - kinematics of gas and simple kinematical models (rotating disks)
 - Masers (high spatial resolution from radio interferometry)
- 🙀 Reverberation mapping & Virial Masses
 - Talk by Giorgio Calderone
- \bigstar In all case need to resolve BH sphere of influence

$$r_{BH} = \frac{G M_{BH}}{\sigma_{\star}^2} = 10.7 \,\mathrm{pc} \left(\frac{M_{BH}}{10^8 M_{\odot}}\right) \left(\frac{\sigma_{\star}}{200 \,\mathrm{km/s}}\right)^{-2}$$
$$\theta_{BH} = 0.11'' \left(\frac{M_{BH}}{10^8 M_{\odot}}\right) \left(\frac{\sigma_{\star}}{200 \,\mathrm{km/s}}\right)^{-2} \left(\frac{D}{20 \,\mathrm{Mpc}}\right)^{-1}$$

Impact of AO & 3D spectroscopy

🙀 🙀 🙀 🙀 🙀

- measurements with long list spectrographs
- HST provided best spatial resolution

🙀 Nowadays

- use of integral field spectroscopy
- high spatial resolution with AO @ 8m class telescopes
- very high spatial resolution in submm with ALMA

🙀 Future

- Optical interferometry (very challenging ...)
- JWST (but little improvement...)
- ELT and 30m class telescopes

nfrared ligh

Stellar dynamics: Schwarschild models

Image of orbit on sky

Observed

galaxy image

Observed

velocity field

 $\stackrel{\checkmark}{\sim}$ new thing: 3D data

🙀 3-I models

inclusion of dark matter haloes (orbits from out to nuclear region)

images of model orbits (with weights) (Cappellari et al. 2004) *M*_{BH}, Y,

╋

[Courtesy of Michele Cappellari]

╋

orbital structure

Stellar dynamics: the case of Centaurus A

Gas kinematics

Assume gas in circularly rotating disk
 Projected velocities and observational effects (e.g. beam smearing)

Gas kinematics

Assume gas in circularly rotating disk
 Projected velocities and observational effects (e.g. beam smearing)

1000

Gas kinematics: the case of Centaurus A

Neumayer et al. 2007

Gas kinematics: ALMA

CO lines in (mostly) spiral galaxies
 ALMA resolution (< 0.01-0.1")
 Molecular gas less dynamically
 hot than ionised gas

NGC1332: Barth+2016

f(CO)

0

Data

Model

Masers

H₂O megamasers in galactic nuclei: "test particles"
 High spatial resolution of radio interferometers
 Possible to measure centripetal acceleration (Herrnstein+99): independent distance!

NGC 4258, Miyoshi+1995

Masers

Problems

Stellar dynamics

🙀 Very complex models e.g. black boxes for "others"

- 🙀 results depend on orbit library (e.g. number of stars)? (e.g. Merritt)
- 🙀 results do depend on 2-I vs 3-I (e.g. Gebhardt et al., Cappellari et al.)
- 🙀 results do depend on considering DM Halo (e.g. Gebhardt et al.)
- \overleftrightarrow axisymmetric or triaxial galaxies?
- 🙀 Jeans modelling reliable? (e.g. *Cappellari et al.*)

Gas kinematics

- \overleftrightarrow Simple modelling but works only if gas is in circularly rotating thin disk
- \overleftrightarrow Degeneracy M_{BH} disk inclination
- \overleftrightarrow Gas velocity dispersion: support against gravity and effects on BH mass?
- 🙀 Effect of non gravitational motions (e.g. outflows)
- \swarrow Masers: Effect of disk mass? Probably not (*Kuo*+18)
- \overleftrightarrow Masers: only edge on disk observed (strong bias)

Stars vs gas comparison

Galaxies with independent M_{BH} measurements from stars and gas Discrepancies ~0.2 dex, up to 0.5 dex

Systematic discrepancies at high mass end:

 $\stackrel{\scriptstyle }{\propto}$ effect of DM Haloes and 3-I/axysimmetry in stars measures?

 $\overleftrightarrow{}$ effect of gas velocity dispersion in gas measures?

De Nicola, AM, Longo 2018

Are they really BHs?

 $\stackrel{}{\propto}$ Sometimes measurements "marginally" resolve BH sphere of influence $\stackrel{}{\propto}$ Affects reliability of mass measurement

Kormendy & Ho 2013

Are they really BHs?

 $\overleftrightarrow{}$ Observations find: dark mass confined within spatial resolution element

🙀 Unambiguous proof of BH: motions close to Schwarzschild radius

At lower confidence: density of possible cluster so high that it must collapse to BH in short time (Maoz+1998)
In most cases survival

Method & Telescope	Scale (R_S)	No. of SBH Detections	M_{\bullet} Range (M_{\odot})	Typical Densities $(M_{\odot} \text{ pc}^{-3})$
Fe K α line (XEUS, ConX)	3–10	0	N/A	N/A
Reverberation mapping (Ground based optical)	600	36	$10^{6} - 4 \times 10^{8}$	$\gtrsim 10^{10}$
Stellar proper motion (Keck, NTT, VLT)	1000	1	4×10^6	4×10^{16}
H ₂ O megamasers (VLBI)	10 ⁴	1	4×10^7	4×10^{9}
Gas dynamics (optical) (Mostly <i>HST</i>)	10 ⁶	11	$7 \times 10^7 - 4 \times 10^9$	$\sim 10^{5}$
Stellar dynamics (Mostly HST)	10 ⁶	17	$10^{7} - 3 \times 10^{9}$	$\sim 10^{5}$

Very far from R_{SCHW} scales

Ferrarese & Ford 2005

time scales of clusters

BH Database as of "today"

About 80 galaxies with "secure" BH masses

Additional ~40 galaxies with less reliable measurements or upper limits

🙀 Various galaxy morphological types

Galaxy	Morphology	А	Distance	M_{BH}	σ_e	L _K	R _e	В
			(Mpc)	$(\log M_{\odot})$	$(\log km/s)$	$(\log L_{\odot})$	$(\log kpc)$	
Circinus	SABb:	3	2.82 ± 0.47	6.23 ± 0.10	1.90 ± 0.02	10 ± 0.12	-0.91 + 0.07	1
A1836	BCGE	0	152.40 ± 8.43	9.57 ± 0.06	2.46 ± 0.02	11.75 ± 0.06	0.89 ± 0.02	0
IC1459	E4	0	28.92 ± 3.74	9.39 ± 0.08	2.52 ± 0.01	11.70 ± 0.06	0.90 ± 0.06	1
NGC524	S0	2	24.22 ± 2.23	8.94 ± 0.05	2.39 ± 0.02	10.52 ± 0.08	0.17 ± 0.07	1
NGC821	S0	1	23.44 ± 1.84	8.22 ± 0.21	2.32 ± 0.02	10.84 ± 0.31	0.33 ± 0.03	1
NGC1023	SB0	2	10.81 ± 0.80	7.62 ± 0.06	2.31 ± 0.02	10.45 ± 0.07	-0.41 ± 0.03	1
NGC1399	E1	0	20.85 ± 0.67	8.95 ± 0.31	2.498 ± 0.004	11.81 ± 0.06	1.53 ± 0.01	1
NGC2273	SBa	3	29.50 ± 1.90	6.93 ± 0.04	2.10 ± 0.03	10.43 ± 0.40	-0.57 ± 0.03	1
NGC2549	S0/	2	12.70 ± 1.64	7.16 ± 0.37	2.16 ± 0.02	9.73 ± 0.06	-0.72 ± 0.06	1
NGC3115	S0/	2	9.54 ± 0.4	8.95 ± 0.10	2.36 ± 0.02	10.93 ± 0.06	0.20 ± 0.06	1
NGC3227	SBa	3	23.75 ± 2.03	$(.32 \pm 0.23)$	2.12 ± 0.04	9.93 ± 0.25	-0.28 ± 0.05	1
NGC3245 NGC3377	50 E5	1	21.38 ± 1.97 10.99 ± 0.46	8.38 ± 0.11 8.25 ± 0.25	2.31 ± 0.02 2.16 + 0.02	10.20 ± 0.00 10.64 ± 0.25	-0.00 ± 0.04 0.52 + 0.02	1
NGC3384	SB0	3	10.39 ± 0.40 11.49 ± 0.74	7.03 ± 0.23	2.10 ± 0.02 2.16 ± 0.02	10.04 ± 0.25 10.20 ± 0.06	-0.51 ± 0.02	1
NGC3393	SABa	3	49.20 + 8.19	7.20 ± 0.33	2.10 ± 0.02 2.17 ± 0.03	10.20 ± 0.00 10.62 ± 0.25	-0.48 ± 0.07	1
NGC3585	SO	2	20.51 ± 1.70	8.52 ± 0.13	2.33 ± 0.02	11.45 ± 0.25	0.93 ± 0.07	1
NGC3608	E1	0	22.75 ± 1.47	8.67 ± 0.10	2.26 ± 0.02	11.04 ± 0.25	0.68 ± 0.03	1
NGC3842	E1	0	92.20 ± 10.64	9.96 ± 0.14	2.43 ± 0.04	12.04 ± 0.06	1.52 ± 0.05	1
NGC3998	S0	2	14.30 ± 1.25	8.93 ± 0.05	2.44 ± 0.01	10.15 ± 0.31	-0.48 ± 0.04	1
NGC4026	S0	2	13.35 ± 1.73	8.26 ± 0.12	2.25 ± 0.02	9.86 ± 0.31	-0.39 ± 0.06	1
NGC4258	SABbc	2	7.27 ± 0.50	7.58 ± 0.03	2.06 ± 0.04	10.03 ± 0.03	-0.33 ± 0.03	1
NGC4261	E2	0	32.36 ± 2.84	8.72 ± 0.10	2.5 ± 0.02	11.53 ± 0.25	0.87 ± 0.04	1
NGC4291	E2	0	26.58 ± 3.93	8.99 ± 0.16	2.38 ± 0.02	10.86 ± 0.25	0.30 ± 0.06	1
NGC4459	E2	1	16.01 ± 0.52	7.84 ± 0.09	2.22 ± 0.02	10.64 ± 0.25	0.00 ± 0.01	1
NGC4473	E5 CO	1	15.25 ± 0.49	7.95 ± 0.24	2.28 ± 0.02	10.80 ± 0.25	0.44 ± 0.01	1
NGC4564	SD	2	15.94 ± 0.51	7.95 ± 0.12	2.21 ± 0.02	10.15 ± 0.06	-0.41 ± 0.01	1
NGC4590	550	2	10.35 ± 0.23 16.46 ± 0.61	1.66 ± 0.20 0.67 ± 0.10	2.13 ± 0.02 2.58 ± 0.02	10.34 ± 0.00 11.66 ± 0.06	-0.14 ± 0.10	1
NGC4049 NCC4607	E2 F5	1	10.40 ± 0.01 12.54 ± 0.40	9.07 ± 0.10 8 13 ± 0.01	2.38 ± 0.02 2.25 ± 0.02	11.00 ± 0.00 11.17 ± 0.31	0.90 ± 0.02 0.64 ± 0.01	1
NGC4889	E4	0	12.04 ± 0.40 102.00 ± 5.17	10.32 ± 0.01	2.25 ± 0.02 2.54 + 0.01	12.25 ± 0.06	1.47 ± 0.01	1
NGC5077	E3	Ő	38.70 + 8.44	8.93 ± 0.27	2.35 ± 0.01 2.35 ± 0.02	11.42 ± 0.06	0.64 ± 0.02	1
NGC5128	E	Õ	3.62 ± 0.20	7.75 ± 0.08	2.18 ± 0.02	10.80 ± 0.31	0.03 ± 0.02	1
NGC5576	E3	1	25.68 ± 1.66	8.44 ± 0.13	2.26 ± 0.02	11.02 ± 0.06	0.79 ± 0.03	1
NGC5845	E3	1	25.87 ± 4.07	8.69 ± 0.16	2.38 ± 0.02	10.43 ± 0.31	-0.41 ± 0.07	1
NGC6086	Ε	0	138.00 ± 11.45	9.57 ± 0.17	2.5 ± 0	11.87 ± 0.08	1.20 ± 0.04	0
NGC6251	E1	0	108.40 ± 9.00	8.79 ± 0.16	2.46 ± 0.02	11.94 ± 0.06	1.20 ± 0.04	1
NGC7052	E3	0	70.40 ± 8.45	8.60 ± 0.23	2.42 ± 0.02	11.77 ± 0.06	1.10 ± 0.05	1
NGC7582	SBab	3	22.30 ± 9.85	7.74 ± 0.20	2.19 ± 0.05	10.61 ± 0.32	-0.62 ± 0.19	0
NGC7768	E4	0	116.00 ± 27.50	9.13 ± 0.18	2.41 ± 0.04	12.00 ± 0.25	1.37 ± 0.10	1
UGC3789	SABab	3	49.90 ± 5.42	6.99 ± 0.08	2.03 ± 0.05	10.33 ± 0.31	-0.24 ± 0.05	1
NGC1332	S0	2	22.30 ± 1.85	8.82 ± 0.10	2.47 ± 0.01	11.20 ± 0.31	0.29 ± 0.06	1
NGC1374 NCC1407	E3 F0	1	19.23 ± 0.00 28.05 ± 2.27	8.70 ± 0.00 0.65 ± 0.08	2.23 ± 0.01 2.442 ± 0.002	10.72 ± 0.00 11.72 ± 0.12	0.30 ± 0.01 0.07 ± 0.05	1
NGC1407 NGC1550	SA0	0	28.05 ± 5.57 51 57 + 5.60	9.03 ± 0.03 9.57 ± 0.07	2.442 ± 0.003 2.44 ± 0.02	11.72 ± 0.12 11.32 ± 0.10	0.97 ± 0.05 0.66 ± 0.05	0
NGC3091	E3	Ő	51.25 ± 8.30	9.56 ± 0.07	2.48 ± 0.02	11.75 ± 0.06	1.10 ± 0.07	1
NGC3368	SABab	3	10.40 ± 0.96	6.88 ± 0.08	2.122 ± 0.003	10.09 ± 0.06	-0.57 ± 0.04	1
NGC3489	SAB0	3	12.10 ± 0.84	6.78 ± 0.05	1.949 ± 0.002	9.68 ± 0.25	-1.00 ± 0.03	1
NGC4751	E	1	26.92 ± 2.92	9.15 ± 0.06	2.56 ± 0.02	10.95 ± 0.09	0.52 ± 0.05	0
NGC5328	E	0	64.10 ± 6.96	9.67 ± 0.16	2.523 ± 0.002	11.71 ± 0.09	0.94 ± 0.05	0
NGC5516	E	0	58.44 ± 6.35	9.52 ± 0.06	2.52 ± 0.02	11.83 ± 0.09	1.30 ± 0.05	0
NGC6861	E	1	27.30 ± 4.55	9.30 ± 0.08	2.590 ± 0.003	11.14 ± 0.13	0.32 ± 0.07	0
NGC7619	E	0	51.52 ± 7.38	9.40 ± 0.11	2.47 ± 0.01	11.78 ± 0.25	1.16 ± 0.06	1
NGC2748	Sc	3	23.40 ± 8.24	7.65 ± 0.24	2.06 ± 0.02	9.84 ± 0.25	-0.39 ± 0.15	1
NGC4151	Sa	2	20.00 ± 2.77	7.81 ± 0.08	2.19 ± 0.02	10.61 ± 0.25	-0.18 ± 0.06	1
NGC7457	SO	2	12.53 ± 1.21	6.95 ± 0.30	1.83 ± 0.02	9.69 ± 0.08	-0.28 ± 0.04	1
NGC307 NGC2627	SAD(c)h	2	52.80 ± 5.74 10.05 ± 1.00	8.00 ± 0.06	2.31 ± 0.01 2.088 ± 0.002	0.45 ± 0.05	-0.31 ± 0.05 1.08 ± 0.07	0
NGC3027	SAD(S)D F4	ა 1	10.00 ± 1.09 20.88 \pm 2.70	0.93 ± 0.03 0.45 ± 0.13	2.000 ± 0.002 2.35 ± 0.002	9.40 ± 0.09 11 50 \pm 0.11	-1.00 ± 0.00	0
NGC44864	E2	1	16.00 ± 0.52	7.10 ± 0.12	2.55 ± 0.02 2.16 + 0.01	10.08 ± 0.05	-0.19 ± 0.00	0
NGC4501	SA(rs)b	3	16.50 ± 0.02	7.30 ± 0.08	2.20 ± 0.01 2.20 ± 0.01	10.16 ± 0.07	-0.40 ± 0.01	0
NGC5018	E3	1	40.55 ± 4.87	8.02 ± 0.08	2.32 ± 0.01 2.32 ± 0.01	11.54 + 0.09	0.62 ± 0.05	0
NGC5419	E	0	56.20 ± 6.11	9.86 ± 0.14	2.56 ± 0.01	12.00 ± 0.09	1.26 ± 0.05	0
IC4296	BCGE	0	49.20 ± 3.63	9.11 ± 0.07	2.51 ± 0.02	11.78 ± 0.25	1.21 ± 0.03	1
NGC1277	S0/	2	73.00 ± 7.30	9.70 ± 0.05	2.52 ± 0.07	10.83 ± 0.08	0.09 ± 0.04	0
IC2560	SBbc	3	33.20 ± 3.32	6.59 ± 0.16	2.15 ± 0.02	10.13 ± 0.25	-0.14 ± 0.04	1

Galaxy	Morphology	А	Distance (Mpc)	M_{BH} (log M_{\odot})	σ_e (log km/s)	$L_K \ (\log L_\odot)$	$\frac{R_e}{(\log kpc)}$	В
NGC224	\mathbf{Sb}	2	0.77 ± 0.03	8.15 ± 0.16	2.23 ± 0.02	10.34 ± 0.10	-0.19 ± 0.02	1
NGC4472	E2	0	17.14 ± 0.59	9.40 ± 0.04	2.48 ± 0.01	11.86 ± 0.06	1.05 ± 0.01	1
NGC3031	$^{\mathrm{Sb}}$	2	3.60 ± 0.13	7.81 ± 0.13	2.15 ± 0.02	10.43 ± 0.31	-0.24 ± 0.02	1
NGC4374	E1	0	18.51 ± 0.60	8.97 ± 0.05	2.47 ± 0.02	11.64 ± 0.25	1.07 ± 0.01	1
NGC4486	E1	0	16.68 ± 0.62	9.68 ± 0.04	2.51 ± 0.03	11.64 ± 0.25	0.85 ± 0.02	1
NGC4594	Sa	2	9.87 ± 0.82	8.82 ± 0.04	2.38 ± 0.02	10.79 ± 0.25	-0.03 ± 0.08	1
NGC3379	E1	0	10.70 ± 0.54	8.62 ± 0.11	2.31 ± 0.02	10.96 ± 0.25	0.42 ± 0.02	1
NGC221	E2	1	0.80 ± 0.03	6.39 ± 0.19	1.89 ± 0.02	9.12 ± 0.04	-0.90 ± 0.02	0
CygnusA	E	0	242.70 ± 24.27	9.42 ± 0.12	2.43 ± 0.05	12.19 ± 0.10	1.46 ± 0.04	0
NGC1271	SB0	2	80.00 ± 8.00	9.48 ± 0.15	2.45 ± 0.01	11.07 ± 0.08	0.34 ± 0.07	0
NGC1275	E	1	73.80 ± 7.38	8.90 ± 0.24	2.39 ± 0.08	11.84 ± 0.08	1.15 ± 0.04	0
NGC1600	E	0	64.00 ± 6.40	10.23 ± 0.04	2.47 ± 0.02	11.86 ± 0.08	1.08 ± 0.04	0
NGC3706	E	0	46.00 ± 4.60	8.78 ± 0.06	2.51 ± 0.01	11.58 ± 0.08	0.80 ± 0.04	0
NGC5252	S0	2	92.00 ± 9.20	8.98 ± 0.23	2.28 ± 0.02	11.49 ± 0.09	0.88 ± 0.06	0
NGC4339	E	1	16.00 ± 1.60	7.63 ± 0.36	1.98 ± 0.02	10.26 ± 0.25	0.37 ± 0.04	0
NGC4434	E	1	22.40 ± 2.24	7.85 ± 0.15	1.99 ± 0.02	10.28 ± 0.25	0.20 ± 0.04	0
NGC4578	E	1	16.30 ± 1.63	7.28 ± 0.22	2.03 ± 0.02	10.33 ± 0.25	0.49 ± 0.04	0
NGC4762	E	1	22.60 ± 2.26	7.36 ± 0.14	2.13 ± 0.02	11.05 ± 0.25	1.06 ± 0.04	0

De Nicola, AM, Longo 2018

Many BH-galaxy relations

Many BH-galaxy relations

Circular rotation velocity V_{circ} (km s⁻¹)

Bulges vs Pseudobulges and Disks

Different relations for late & early types?

- Recent work with careful bulge/disk decomposition from 3.6 μm Spitzer images (Savorgnan & Graham 2015)
- Accurate BH-galaxy relations: no difference between bulges and pseudo-bulges, apparently due to different relations for early type galaxies spheroids (red sequence) and spiral galaxy bulges / spheroids (blue cloud)

e.g. Batcheldor 2010 but see Gultekin+11

e.g. Batcheldor 2010 but see Gultekin+11

e.g. Batcheldor 2010 but see Gultekin+11

Maximum distance at which a BH can be detected (RBH spatially resolved)

e.g. Batcheldor 2010 but see Gultekin+11

e.g. Batcheldor 2010 but see Gultekin+11

Maximum distance at which a BH can be detected (R_{BH} spatially resolved)

e.g. Batcheldor 2010 but see Gultekin+11

NO detection areas on M_{BH} - σ diagram for given $\Delta \theta$, D:

- \mathbf{X} Direct M_{BH} measures are limited to the local universe (D~250 Mpc)
- 🙀 There are definitely no BHs above the correlation (big BHs in small galaxies)
- 🙀 The area below the correlation is 'biased' and cannot be explored (small BHs in big galaxies?)

Mass Bias

Correlations are biased to higher Mass/Velocity dispersion galaxies

 $\stackrel{}{\propto}$ Normalization of M_{BH} - σ relation increased by factor ~3

Which is the "fundamental" relation?

- \simeq Proposal of BH "Fundamental plane" M_{BH} ~ σ^α R^β (e.g. Hopkins+2007) Hopkins+ find M_{BH} ~ σ^{3.0} R^{0.4} (-E_{grav} ~ 2 E_{kin} ~ σ^{4.0} R)

 $rac{1}{2}$ In general M_{BH-}σ considered "fundamental" because it has smaller intrinsic scatter

What about the well-known fundamental plane of elliptical galaxies?

 $\begin{array}{l} & \swarrow \\ & \swarrow \\ & \swarrow \\ & M_{BH} \sim (L_K/R_e)^{3.8} \\ & \text{with same scatter as} \\ & M_{BH} \sim \sigma^{5.4} \\ & \text{consistent with FP Projection} \\ & \swarrow \\ & \bowtie \\ & M_{BH} - \sigma \text{ main relation, other relations} \\ & \text{are combination with FP} \end{array}$

Data from Saglia+97, Wegner+99

BH Database as of "today

About 80 galaxies with "secure" BH masses

 \approx Additional ~40 galaxies with less reliable measurements or upper limits 🙀 Various galaxy morphological types

🙀 De Nicola, AM, Longo (2018) combine "secure" BH masses with photometry from Spizter 3.6um or K band (good tracers of stellar mass)

Galaxy	Morphology	А	Distance (Mpc)	M_{BH} (log M_{\odot})	σ_e (log km/s)	$L_K \ (\log L_\odot)$	$\frac{R_e}{(\log kpc)}$	В
NGC224	\mathbf{Sb}	2	0.77 ± 0.03	8.15 ± 0.16	2.23 ± 0.02	10.34 ± 0.10	-0.19 ± 0.02	1
NGC4472	E2	0	17.14 ± 0.59	9.40 ± 0.04	2.48 ± 0.01	11.86 ± 0.06	1.05 ± 0.01	1
NGC3031	\mathbf{Sb}	2	3.60 ± 0.13	7.81 ± 0.13	2.15 ± 0.02	10.43 ± 0.31	-0.24 ± 0.02	1
NGC4374	E1	0	18.51 ± 0.60	8.97 ± 0.05	2.47 ± 0.02	11.64 ± 0.25	1.07 ± 0.01	1
NGC4486	E1	0	16.68 ± 0.62	9.68 ± 0.04	2.51 ± 0.03	11.64 ± 0.25	0.85 ± 0.02	1
NGC4594	Sa	2	9.87 ± 0.82	8.82 ± 0.04	2.38 ± 0.02	10.79 ± 0.25	-0.03 ± 0.08	1
NGC3379	E1	0	10.70 ± 0.54	8.62 ± 0.11	2.31 ± 0.02	10.96 ± 0.25	0.42 ± 0.02	1
NGC221	E2	1	0.80 ± 0.03	6.39 ± 0.19	1.89 ± 0.02	9.12 ± 0.04	-0.90 ± 0.02	0
CygnusA	Е	0	242.70 ± 24.27	9.42 ± 0.12	2.43 ± 0.05	12.19 ± 0.10	1.46 ± 0.04	0
NGC1271	SB0	2	80.00 ± 8.00	9.48 ± 0.15	2.45 ± 0.01	11.07 ± 0.08	0.34 ± 0.07	0
NGC1275	Е	1	73.80 ± 7.38	8.90 ± 0.24	2.39 ± 0.08	11.84 ± 0.08	1.15 ± 0.04	0
NGC1600	Е	0	64.00 ± 6.40	10.23 ± 0.04	2.47 ± 0.02	11.86 ± 0.08	1.08 ± 0.04	0
NGC3706	Е	0	46.00 ± 4.60	8.78 ± 0.06	2.51 ± 0.01	11.58 ± 0.08	0.80 ± 0.04	0
NGC5252	S0	2	92.00 ± 9.20	8.98 ± 0.23	2.28 ± 0.02	11.49 ± 0.09	0.88 ± 0.06	0
NGC4339	E	1	16.00 ± 1.60	7.63 ± 0.36	1.98 ± 0.02	10.26 ± 0.25	0.37 ± 0.04	0
NGC4434	Е	1	22.40 ± 2.24	7.85 ± 0.15	1.99 ± 0.02	10.28 ± 0.25	0.20 ± 0.04	0
NGC4578	E	1	16.30 ± 1.63	7.28 ± 0.22	2.03 ± 0.02	10.33 ± 0.25	0.49 ± 0.04	0
NGC4762	Е	1	22.60 ± 2.26	7.36 ± 0.14	2.13 ± 0.02	11.05 ± 0.25	1.06 ± 0.04	0

De Nicola, AM, Longo 2018

Galaxy	Morphology	А	Distance	M _{BH}	σ_e	L_K	R _e	В
			(Mpc)	$(\log M_{\odot})$	$(\log km/s)$	$(\log L_{\odot})$	$(\log kpc)$	
Circinus	SABb:	3	2.82 ± 0.47	6.23 ± 0.10	1.90 ± 0.02	10 ± 0.12	-0.91 ± 0.07	1
A1836	BCGE	0	152.40 ± 8.43	9.57 ± 0.06	2.46 ± 0.02	11.75 ± 0.06	0.89 ± 0.02	0
IC1459	E4	0	28.92 ± 3.74	9.39 ± 0.08	2.52 ± 0.01	11.70 ± 0.06	0.90 ± 0.06	1
NGC524	S0	2	24.22 ± 2.23	8.94 ± 0.05	2.39 ± 0.02	10.52 ± 0.08	0.17 ± 0.07	1
NGC821 NGC1022	SD	1	23.44 ± 1.84	8.22 ± 0.21	2.32 ± 0.02	10.84 ± 0.31	0.33 ± 0.03	1
NGC1025 NGC1300	5D0 F1	2	10.81 ± 0.80 20.85 ± 0.67	7.02 ± 0.00 8.05 ± 0.31	2.31 ± 0.02 2 408 ± 0.004	10.45 ± 0.07 11.81 ± 0.06	-0.41 ± 0.03 1 53 ± 0.01	1
NGC2273	SBa	3	20.35 ± 0.07 29.50 ± 1.90	6.93 ± 0.01 6.93 ± 0.04	2.438 ± 0.004 2.10 ± 0.03	10.43 ± 0.00	-0.57 ± 0.01	1
NGC2549	S0/	2	12.70 ± 1.64	7.16 ± 0.37	2.16 ± 0.02	9.73 ± 0.06	-0.72 ± 0.06	1
NGC3115	S0/	2	9.54 ± 0.4	8.95 ± 0.10	2.36 ± 0.02	10.93 ± 0.06	0.20 ± 0.06	1
NGC3227	SBa	3	23.75 ± 2.63	7.32 ± 0.23	2.12 ± 0.04	9.93 ± 0.25	-0.28 ± 0.05	1
NGC3245	S0	2	21.38 ± 1.97	8.38 ± 0.11	2.31 ± 0.02	10.20 ± 0.06	-0.60 ± 0.04	1
NGC3377	E5	1	10.99 ± 0.46	8.25 ± 0.25	2.16 ± 0.02	10.64 ± 0.25	0.52 ± 0.02	1
NGC3384	SB0	3	11.49 ± 0.74	7.03 ± 0.21	2.16 ± 0.02	10.20 ± 0.06	-0.51 ± 0.03	1
NGC3393	SABa	3	49.20 ± 8.19	7.20 ± 0.33	2.17 ± 0.03	10.62 ± 0.25	-0.48 ± 0.07	1
NGC3505 NGC3608	50 E1	0	20.31 ± 1.70 22.75 ± 1.47	8.52 ± 0.13 8.67 ± 0.10	2.33 ± 0.02 2.26 ± 0.02	11.45 ± 0.25 11.04 ± 0.25	0.95 ± 0.07 0.68 ± 0.03	1
NGC3842	E1	0	92.20 ± 10.64	9.96 ± 0.14	2.43 ± 0.02	12.04 ± 0.26 12.04 ± 0.06	1.52 ± 0.05	1
NGC3998	SO	2	14.30 ± 1.25	8.93 ± 0.05	2.44 ± 0.01	10.15 ± 0.31	-0.48 ± 0.04	1
NGC4026	S0	2	13.35 ± 1.73	8.26 ± 0.12	2.25 ± 0.02	9.86 ± 0.31	-0.39 ± 0.06	1
NGC4258	SABbc	2	7.27 ± 0.50	7.58 ± 0.03	2.06 ± 0.04	10.03 ± 0.03	-0.33 ± 0.03	1
NGC4261	E2	0	32.36 ± 2.84	8.72 ± 0.10	2.5 ± 0.02	11.53 ± 0.25	0.87 ± 0.04	1
NGC4291	E2	0	26.58 ± 3.93	8.99 ± 0.16	2.38 ± 0.02	10.86 ± 0.25	0.30 ± 0.06	1
NGC4459	E2	1	16.01 ± 0.52	7.84 ± 0.09	2.22 ± 0.02	10.64 ± 0.25	0.00 ± 0.01	1
NGC4473 NGC4564	E5 S0	2	15.25 ± 0.49 15.94 ± 0.51	7.95 ± 0.24 7.95 + 0.12	2.28 ± 0.02 2.21 + 0.02	10.80 ± 0.25 10.15 ± 0.06	0.44 ± 0.01	1
NGC4596	SB0	2	16.53 ± 6.23	7.88 ± 0.12 7.88 ± 0.26	2.21 ± 0.02 2.13 ± 0.02	10.13 ± 0.00 10.34 ± 0.06	-0.14 ± 0.01	1
NGC4649	E2	0	16.46 ± 0.61	9.67 ± 0.10	2.58 ± 0.02	11.66 ± 0.06	0.90 ± 0.02	0
NGC4697	E5	1	12.54 ± 0.40	8.13 ± 0.01	2.25 ± 0.02	11.17 ± 0.31	0.64 ± 0.01	1
NGC4889	E4	0	102.00 ± 5.17	10.32 ± 0.44	2.54 ± 0.01	12.25 ± 0.06	1.47 ± 0.02	1
NGC5077	E3	0	38.70 ± 8.44	8.93 ± 0.27	2.35 ± 0.02	11.42 ± 0.06	0.64 ± 0.09	1
NGC5128	E	0	3.62 ± 0.20	7.75 ± 0.08	2.18 ± 0.02	10.80 ± 0.31	0.03 ± 0.02	1
NGC5576	E3	1	25.68 ± 1.66	8.44 ± 0.13	2.26 ± 0.02	11.02 ± 0.06	0.79 ± 0.03	1
NGC5845 NCC6086	E3 F	1	23.87 ± 4.07 138.00 ± 11.45	8.09 ± 0.10 0.57 ± 0.17	2.38 ± 0.02	10.43 ± 0.31 11.87 ± 0.08	-0.41 ± 0.07 1.20 ± 0.04	1
NGC6251	E1	0	108.40 + 9.00	8.79 ± 0.16	2.46 ± 0.02	11.94 ± 0.08	1.20 ± 0.04 1.20 + 0.04	1
NGC7052	E3	Õ	70.40 ± 8.45	8.60 ± 0.23	2.42 ± 0.02	11.77 ± 0.06	1.10 ± 0.05	1
NGC7582	SBab	3	22.30 ± 9.85	7.74 ± 0.20	2.19 ± 0.05	10.61 ± 0.32	-0.62 ± 0.19	0
NGC7768	E4	0	116.00 ± 27.50	9.13 ± 0.18	2.41 ± 0.04	12.00 ± 0.25	1.37 ± 0.10	1
UGC3789	SABab	3	49.90 ± 5.42	6.99 ± 0.08	2.03 ± 0.05	10.33 ± 0.31	-0.24 ± 0.05	1
NGC1332	S0	2	22.30 ± 1.85	8.82 ± 0.10	2.47 ± 0.01	11.20 ± 0.31	0.29 ± 0.06	1
NGC1374 NCC1407	E3 F0	1	19.23 ± 0.00 28.05 ± 2.27	8.76 ± 0.06	2.23 ± 0.01 2.442 ± 0.002	10.72 ± 0.06 11.72 ± 0.12	0.36 ± 0.01 0.07 ± 0.05	1
NGC1407 NGC1550	SAO	0	28.05 ± 5.57 51 57 ± 5.60	9.05 ± 0.08 9.57 ± 0.07	2.442 ± 0.003 2.44 + 0.02	11.72 ± 0.12 11.32 ± 0.10	0.97 ± 0.05 0.66 ± 0.05	0
NGC3091	E3	Õ	51.25 ± 8.30	9.56 ± 0.07	2.48 ± 0.02	11.75 ± 0.06	1.10 ± 0.07	1
NGC3368	SABab	3	10.40 ± 0.96	6.88 ± 0.08	2.122 ± 0.003	10.09 ± 0.06	-0.57 ± 0.04	1
NGC3489	SAB0	3	12.10 ± 0.84	6.78 ± 0.05	1.949 ± 0.002	9.68 ± 0.25	-1.00 ± 0.03	1
NGC4751	E	1	26.92 ± 2.92	9.15 ± 0.06	2.56 ± 0.02	10.95 ± 0.09	0.52 ± 0.05	0
NGC5328	E	0	64.10 ± 6.96	9.67 ± 0.16	2.523 ± 0.002	11.71 ± 0.09	0.94 ± 0.05	0
NGC5516	E	0	58.44 ± 6.35	9.52 ± 0.06	2.52 ± 0.02	11.83 ± 0.09	1.30 ± 0.05	0
NGC0801 NGC7619	E	1	27.30 ± 4.33 51.52 ± 7.38	9.30 ± 0.08 9.40 ± 0.11	2.390 ± 0.003 2.47 ± 0.01	11.14 ± 0.13 11.78 ± 0.25	0.32 ± 0.07 1.16 ± 0.06	1
NGC2748	Sc	3	23.40 + 8.24	7.65 ± 0.24	2.06 ± 0.01	9.84 ± 0.25	-0.39 ± 0.15	1
NGC4151	Sa	2	20.00 ± 2.77	7.81 ± 0.08	2.19 ± 0.02	10.61 ± 0.25	-0.18 ± 0.06	1
NGC7457	S0	2	12.53 ± 1.21	6.95 ± 0.30	1.83 ± 0.02	9.69 ± 0.08	-0.28 ± 0.04	1
NGC307	S0	2	52.80 ± 5.74	8.60 ± 0.06	2.31 ± 0.01	10.50 ± 0.05	-0.31 ± 0.05	0
NGC3627	SAB(s)b	3	10.05 ± 1.09	6.93 ± 0.05	2.088 ± 0.002	9.45 ± 0.09	-1.08 ± 0.05	0
NGC3923	E4 F2	1	20.88 ± 2.70	9.45 ± 0.12	2.35 ± 0.02	11.50 ± 0.11	0.89 ± 0.06	0
NGC4480A	EZ SA(va)b	1	10.00 ± 0.52 16 50 ± 1.14	$(.10 \pm 0.15)$ 7 30 ± 0.09	2.10 ± 0.01	10.08 ± 0.05 10.16 ± 0.07	-0.19 ± 0.01 0.40 ± 0.02	0
NGC5018	E3	э 1	40.55 ± 4.87	7.30 ± 0.08 8.02 ± 0.08	2.20 ± 0.01 2.32 ± 0.01	10.10 ± 0.07 11.54 ± 0.00	-0.40 ± 0.03 0.62 ± 0.05	0
NGC5419	E	0	56.20 ± 6.11	9.86 ± 0.14	2.56 ± 0.01	12.00 ± 0.09	1.26 ± 0.05	Ő
IC4296	BCGE	0	49.20 ± 3.63	9.11 ± 0.07	2.51 ± 0.02	11.78 ± 0.25	1.21 ± 0.03	1
NGC1277	S0/	2	73.00 ± 7.30	$9.70~\pm~0.05$	2.52 ± 0.07	10.83 ± 0.08	0.09 ± 0.04	0
IC2560	SBbc	3	33.20 + 3.32	6.59 ± 0.16	2.15 ± 0.02	10.13 ± 0.25	-0.14 ± 0.04	1

3 33.20 ± 3.32 6.59 ± 0.16 2.15 ± 0.02 10.13 ± 0.25 -0.14 ± 0.04

FP of galaxies with BH Masses

 \cancel{x} All galaxies follow FP, also pseudo bulges seem to

De Nicola, AM, Longo 2018

A BH fundamental plane?

 $M_{BH} = (-0.21 \pm 0.33)L + (0.56 \pm 0.33)R + (4.10 \pm 0.39)V$ L, R, V, logs

 \Leftrightarrow Main dependence on $V = \log \sigma$, small dependence on $R = \log R_e$, no dependence on $L = \log L_{sph}$,

 \overleftrightarrow Intrinsic scatter not decreased w.r.t. M_{BH}- σ

Hyperplane is not the fundamental relation!

To disentangle FP from M_{BH}-L, σ ,R relations \overleftrightarrow Assume BH fundamental relation $M_{BH} = \alpha L + \beta R + \gamma V + \Sigma$ (Σ int. scatter) \overleftrightarrow Model FP as a trivariate Gaussian distribution $\phi(L, R, V)$

Slopes and intrinsic scatters of all M_{BH} -L,σ,R can be computed analytically as a function of **α, β,** γ**, Σ**

We conclude that $M_{BH} \sim \sigma^{4.0} R^{0.4}$ is best relation (fundamental?) This result takes into account FP

De Nicola, AM, Longo 2018

Physical meaning of BH-galaxy relations

Huge topic with hundreds/thousands of papers ... a few key points:

Relation M_{BH}-galaxy properties implies a physical link between BH and host galaxy (*Coevolution BH-galaxy*)
 BH sphere of influence very small: V_{BH}/V_{gal} ~ 10⁻⁷ → no gravitational link
 Energy released to grow BH >> gravitational binding energy

→ AGN feedback (Talks by M. Brusa, R. Maiolino tomorrow)

Possibilities to establish M_{BH}-galaxy relations:

- AGN feedback on host galaxy (also needed to stop galaxy growth)
- ☆ BH self-regulation (i.e. feedback ອຶ
 on small scales < 1 kpc)</p>
- ☆ Random growth → central limit → big BHs in big galaxies
 - but scatter too large?

A very simple model ...

Model by A. King and collaborators:

for L/L_{Edd}~1 fast wind accelerated close to AGN

 \overleftrightarrow wind creates a bubble which sweeps the gas in host galaxy ISM

shock forms at the interface between wind and swept ISM

 ☆ post shock material is Comptoncooled by AGN up to ~kpc scales
 → wind is momentum driven

 \approx wind falls back until M_{BH} ~ M_{BH}(σ)

☆ then expands beyond ~kpc scales,
 Compton-cooling no more effective
 → outflow becomes energy driven

A very simple model ...

$$\rightleftharpoons \text{ model prediction } M_{\rm BH} = \frac{2f_g\sigma_T}{\pi m_p G^2} \sigma^4 = 4.6 \times 10^8 \,\mathrm{M}_{\odot} \left(\frac{\sigma}{200 \,\mathrm{km}}\right)^4$$

Extremely simple: spherical symmetry, ISM with uniform density, galaxy as isothermal sphere but ...

agreement with observations tells us that the basic physics is probably there

Review by Kormendy & Ho up to 2013

- \approx Signs of evolution at z<2 disappear when whole galaxy is considered
- $\dot{\chi}$ Increased M_{BH}/M_{Gal} weakens evidence for evolution at lower z

Kormendy & Ho 2013

Review by Kormendy & Ho up to 2013

- \bigstar Signs of evolution at z<2 disappear when whole galaxy is considered
- $\dot{\chi}$ Increased M_{BH}/M_{Gal} weakens evidence for evolution at lower z

Kormendy & Ho 2013

- Average M_{BH}/M_{gal} larger than in local universe at z <1-3 (Peng+06, Treu+04,07, Woo+06,08, Bennert+10,11, Decarli+09,10, Alexander+09, Merloni+10)
- ☆ M_{BH}/M_{gal} increases at higher z (Wu+07, Ho+07, Maiolino+09, Walter+09): M_{BH} up to ~10% of M_{gal}!
- Large M_{BH}/M_{gal(star)} might be due to selection effects (e.g. Lamastra+10) or biases (e.g. Lauer+07)
 - The ALMA revolution: extension to very high redshift with "dynamical" M_{gal} (e.g. Maiolino+05, Walter+09, Wang+13, 16, Willott+13,15, Venemans+12,16,17, Banados+15, Decarli+17, Trakhtenbrot+17)

Host galaxy dynamical mass (M_c

Decarli+10

- Average M_{BH}/M_{gal} larger than in local universe at z <1-3 (Peng+06, Treu+04,07, Woo+06,08, Bennert+10,11, Decarli+09,10, Alexander+09, Merloni+10)
- ☆ M_{BH}/M_{gal} increases at higher z (Wu+07, Ho+07, Maiolino+09, Walter+09): M_{BH} up to ~10% of M_{gal}!
- Large M_{BH}/M_{gal(star)} might be due to selection effects (e.g. Lamastra+10) or biases (e.g. Lauer+07)
 - The ALMA revolution: extension to very high redshift with "dynamical" M_{gal} (e.g. Maiolino+05, Walter+09, Wang+13, 16, Willott+13,15, Venemans+12,16,17, Banados+15, Decarli+17, Trakhtenbrot+17)

Redshift evolution: challenges on Мвн

Redshift evolution: challenges on Мвн

Virial masses $M_{BH} = f V^2 R / G$

CIV: used for very high redshift (with optical spectra) but reliability questioned by many authors
 CIV probably affected by outflows

Denney 13 shows that CIV average line profile are different than *r.m.s.* ones: existence of non-BLR extended component (outflow?) strongly affects line width estimate

Redshift evolution: challenges on Мвн

Virial masses $M_{BH} = f V^2 R / G$

🙀 Radiation pressure

- May affect BH mass estimates (partially cancel gravitational force; Marconi+08, +09)
- Still an open issue

If all incident ionising photons absorbed by a BLR cloud (must be to have MgII emission ...)

$$F = \frac{L_{ion}}{4\pi r^2 c} \Delta A \qquad F_{grav} = \frac{GM(r)m_pN_H\Delta A}{r^2}$$

$$\frac{F_{rad}}{F_{grav}} = \frac{L_{ion}}{4\pi G \, c \, m_p \, M(r) \, N_H} \simeq 5$$
r

 $L_{ion} = 10^{13} L_{\odot}, \ M(r) = M_{BH} = 10^9 M_{\odot}, \ N_H = 10^{23} cm^{-2}$

Redshift evolution: challenges on galaxy props.

Virial masses in (luminous) AGN

- Galaxy properties difficult to measure (galaxy difficult to "see" with AGN emission)
- Selection effects: sampling objects at specific time of their evolution (e.g. Lamastra+10)
- ALMA revolution: it is possible to measure dynamical galaxy masses up to high redshift
 10³
 10³
 10³
 11 minipage of PS01167-13
 12 050 12310+1
 - Same challenges as in BH mass measurement form gas (galaxy sizes at high z, similar to nuclear disk sizes i.e. < 1")</p>
 - Usually galaxy masses are simple virial estimates
 - Dynamical masses are total masses within a few kpc

Conclusions

🙀 BH mass measurements

There are open issues on gas and stellar kinematical measurements

We still not have the unambiguous proof that we detect BHs (except for Milky Way) but considering AGN they most likely are ...

\overleftrightarrow Which relations are real?

- We still need to probe the low BH in big bulge regime
- Existence of correlations imply coevolution BH-galaxy
- There is a fundamental correlation (e.g. M_{BH} - σ or M_{BH} - σ , R) the rest result from combination with galaxy structure (e.g. FP)

\overleftrightarrow Redshift evolution and origin of these relations?

- At high redshift BH seem over massive compared to host galaxies
- Imited to type 1 AGN for virial BH masses
- need to properly measure galaxy dynamical masses