High-energy neutrinos from blazars

Fabrizio Tavechio INAF-OAB

...when the Super Massive Black Hole ... has a crush on the galaxy

Cosmic accelerators

Ingredients:

hígh-energy protons (nucleí) + Targets: matter, photons

Ingredients:

hígh-energy protons (nucleí) + Targets: matter, photons

Tracers of very-high energy cosmic ray acceleration (and propagation)

Astrophysical production in a nutshell

proton-proton (pp)

$$p + p \to \pi + X$$

proton-photon (p_Y) $\pi^+ \rightarrow \mu^+ + \nu_{\mu} \rightarrow e^+ + \overline{\nu_e} + \overline{\nu_{\mu}} + \nu_{\mu}$ $p + \gamma \rightarrow n + \pi^+$ $\pi^0 \rightarrow 2\gamma$ $p + \gamma \rightarrow p + \pi^0$

Astrophysical production in a nutshell

proton-photon (p_y)

$$p + \gamma \rightarrow n + \pi^+$$

 $p + \gamma \rightarrow p + \pi^0$

$$E_{\rm th} = \frac{2m_p m_\pi + m_\pi^2}{4\epsilon} \simeq 7 \times 10^{16} \left(\frac{\epsilon}{\rm eV}\right)^{-1} \,\rm eV$$

IceCube

IceCube

IceCube

CC Muon Neutrino

track (data)

factor of \approx 2 energy resolution < 1° angular resolution at high energies

Neutral Current / Electron Neutrino

 $u_{e} + N \rightarrow e + X$ $\nu_{x} + N \rightarrow \nu_{x} + X$

cascade (data)

≈ ±15% deposited energy resolution
 ≈ 10° angular resolution
 (at energies ≥ 100 TeV)

Discovery of high-energy neutrinos

28 events (21 shower) May 2010-May 2012

Fírst evidence (4.3 sigma) of HE extraterrestrial (i.e. non atmospheric) neutrinos!

Abbasi et al. 2013

Current status

HESE 4yr with $E_{dep} > 100$ TeV (green) / Northern sky $\nu_{\mu} + \nu_{\mu}^{-}$ 6yr with $E_{\mu} > 200$ TeV (red)

Current status

Gaisser 2018

Potential source(s)

Ingredients:

hígh energy protons (nucleí) + Targets: matter, photons Injected luminosity, spectrum, maximum energy

Candidate source: potential site of **CR** acceleration with substantial density of **matter** and/or **photons**

Potential source(s)

Neutrinos from blazar jets?

Relativistic jets: blazars?

Photomeson production strongly favored

Murase, Inoue & Dermer 2014

Neutrino from BL Lacs?

One-zone models

e.g., Petropoulou et al. 2015, 2016

Ghisellini, FT and Chiaberge 2005 Tavecchio & Ghisellini 2008

Simulations predict spine-layer structure

Entrainment/instability e.g. Rossi et al. 2008 Acceleration process e.g. McKinney 2006

Limb brightening Mkn 501, Mkn 421, M87, NGC 1275 Laing 1996 Giroletti et al. 2004 Piner & Edwards 2014 Pushkarev et al. 2005 Clausen-Brown 2011 Murphy et al. 2013

Símílar suggestíons for GRBs...

Unification requires velocity structures

Chiaberge et al. 2000 Meyer et al. Sbarrato et al. 2014

 $\Gamma_{\rm rel} = \Gamma_{\rm s} \Gamma_{\rm l} (1 - \beta_{\rm s} \beta_{\rm l})$ $U' \simeq U \Gamma_{\rm rel}^2$

 \star The spine "sees" an enhanced U_{rad} coming from the layer

Rates of processes involving soft photons are enhanced w.r.t. to the one-zone model

Both IC and neutrino emission!

 $L_{\nu} \approx \frac{3}{8} f_{p\gamma} L_p$

 $f_{p\gamma} \propto n_{soft}$

Increased target density

Reduced proton lumínosíty

FT et al. 2014, 2015 Righi FT, Guetta 2017

2017 september 22

2017 september 22

A burst of models ...

Jet-sheath model

Numerical model by. W. Bhattacharyya

A role for the accretion flow?

Take home messages

The astrophysical setting is relevant! Environment could play an important role

External photons can help to keep the jet power below 10⁴⁷ erg/s

Fits using the structured jet scenario allow us to determine several parameters in a self-consistent way (but several parameters!)

The future

KM3NeT

To be deployed in the Mediterranean Sea

Trovato et al. 2014

Take home message

Neutrino provide us an effective probe of acceleration/propagation of particles at the highest energies

Detection of PeV neutrinos by IceCube

Candidate sources: probably a mix?

Blazars? Stay tuned ...

Tidal disruption events?

Petropoulou et al. 2017

Potential source(s)

Constraints

 $\phi_{\nu} \approx \frac{c}{4\pi H_0} \, \xi_z \, \rho_0 L_{\nu} \qquad {\rm Assuming \ one \ population}$

 $\rho_0 L_{\nu} \approx \frac{\phi_{\nu} 4\pi H_0}{\xi_z c} = const$

Constraints

Assuming the entire IceCube flux

Kowalski 2015

Constraints

Assuming the entire IceCube flux

Murase & Waxman 2016

See also Palladino & Vissani 2017

Starburst/Star forming galaxies?

Loeb & Waxman 2006 Tamborra et al. 2014

CR accelerated in SNR + dense gas

Starburst/Star forming galaxies?

Difficult to obtain a direct association

AGN-driven winds?

Lamastra et al. 2016, 2017

CR accelerated in the shock wind + dense gas

CR accelerated in Shocks + radiation

Gamma-ray bursts?

Waxman & Bahcall 1997

Probably no...

Aartsen et al. 2017

Relativistic jets: radiogalaxies?

CR accelerated in Shocks + gas in the jet

Becker-Tijus 2004

CR accelerated in Shocks + gas in the host

Tavecchio et al. 2018

Jet-sheath model

MAGIC Coll. 2018

Effect of maximum proton energy

Larger Ep -> Lower neutrino rate at 300 Tev

Jet-sheath model

State	MJD 58029-30	Lower VHE
<i>B</i> [G]	2.6	2.6
E_{\min} [eV]	$3.2 imes 10^8$	$2.0 imes 10^8$
$E_{\rm br}~[{ m eV}]$	$7.0 imes 10^8$	$9.0 imes 10^8$
E_{\max} [eV]	8×10^{11}	8×10^{11}
n_1	2	2
n_2	3.9	4.4
$U_e ~[{ m erg}~{ m cm}^{-3}]$	$4.4 imes 10^{-4}$	$3.6 imes 10^{-4}$
$U_B \ [\mathrm{erg} \ \mathrm{cm}^{-3}]$	0.27	0.27
$U_p ~[{ m erg}~{ m cm}^{-3}]$	1.8	0.7
$P_e \; [\mathrm{erg} \; \mathrm{s}^{-1}]$	$2 imes 10^{42}$	$1.6 imes 10^{42}$
$P_p \ [\mathrm{erg} \ \mathrm{s}^{-1}]$	8×10^{45}	3×10^{45}
$P_B [\mathrm{erg} \ \mathrm{s}^{-1}]$	$1.2 imes 10^{45}$	1.2×10^{45}

 $P_j \approx 4 \times 10^{45} - 10^{46} \,\mathrm{erg}\,\mathrm{s}^{-1}$